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Abstract—In this paper, the adaptive fault compensation prob-
lem is investigated for high-speed trains in the presence oftime-
varying system parameters, disturbances and actuator failures.
To deal with the time-varying system parameters, a new time-
varying indicator function instead of commonly used 0-1 function,
is proposed to model the train dynamics as a piecewise model with
unparameterizable time-varying disturbances, which can cover
more time variations and help parametrization for adaptation.
A backstepping adaptive controller is designed for the healthy
system with unknown piecewise model parameters and known
piecewise bounds on disturbances. For both the parameterizable
and unparameterizable failures, the backstepping adaptive fail-
ure compensation with the adaptive laws are derived to achieve
the position tracking under the known bound disturbances.
The adaptive failure compensation for unknown bounds on
disturbances is also discussed under the parameterizable failure.
Through introducing the nonlinear damping in the proposed
controller, the failure compensation controller is proposed for
the model with unparameterizable system parameters to achieve
an arbitrary degree of position tracking accuracy. The stability
of the corresponding closed-loop system and asymptotic state
tracking are proved via Lyapunov direct method, and validated
using a high-speed train model.

Index Terms—Failure compensation, actuator failures, adap-
tive control, high-speed train.

I. I NTRODUCTION

High-speed train with its reliable, fast and high loading
capacities, has attracted more and more attention in the recent
years. With the increasing requirements of the speed and safety
of the train operation, a lot of efforts has been devoted to
the control design for high-speed trains, see [1]- [3]. Similar
to the other complex systems, high-speed train formed by
the sensors, motors, electrical components, mechanical drives
and so on, will have failures with the long time (distance)
operation, which could lead to the delay and even stop of
the train. Thus, it is critical to study fault diagnosis and fault-
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tolerant control (failure compensation) problem for high-speed
trains.

Although in the past years, a considerable amount of
research have been made in fault diagnosis and fault-tolerant
control (see, for example, [4]- [7]), the corresponding results
for high-speed trains are very few (see, [8]- [9]). The existing
results of the fault-tolerant control or the controller design
show that the model-based methods are popular for the au-
tomatic train operation of high-speed trains. It is well-known
that the dynamic motion model of the train is time-varying
and nonlinear, changing with the train operating conditions. To
deal with the characteristics of time-varying and nonlinearity,
the time-invariant nonlinear model with bounded (Lipschitz)
functions of disturbances is considered in [10] and [11].
However, disturbances under different operating conditions
may not be the same, for example, the disturbances caused
by the tunnel and the wheel-rail skid. It should be noted that
one common bounded function on all disturbances cannot
represent the characteristics of train dynamics well, which
motivates us to utilize the piecewise disturbances to model
the train dynamics. Further, considering that the change ofthe
parameters of the train dynamic motion model are not abrupt,
a piecewise model with time-varying indicator functions and
bounded piecewise disturbances are considered in this paper,
which is more practical and important.

Although there exist a lot of methods to obtain the system
parameters (see, [12]- [14] ), it is difficult to obtain all
the parameters in the train dynamic model, and the time
and amplitudes of the failures. Moreover, position and speed
tracking is one of the main tasks for the automatic train
operation, which is implemented by the designed controlleror
fault-tolerant controller. The adaptive technique is proposed to
solve the unknown parameters problem and to achieve good
tracking performance (see [15], [16], [17]). To the best of
the authors’ knowledge, the failure compensation problem for
piecewise model involved in the unknown parameters, failures
and disturbances, has not been fully investigated yet.

This paper is focused on the actuator failure compensation
problem for high-speed trains in the presence of parameterized
time-varying parameters, unparameterized disturbances,and
time-varying yet unpredictable actuator failures, simultaneous-
ly. The main contribution of this paper can be summarized as
follows:

(i) Considering the time-varying system parameters and
unmodelled disturbances of high-speed trains, a new
time-varying indicator function which can represent
more time variations than that 0-1 indicator function
represents, is proposed to parameterize the time-varying
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system parameters, and piecewise bounds of disturbance
are introduced to describe the unparameterizable distur-
bances.

(ii) For different failure and disturbance cases (including
the parameterized and unparameterized actuator fail-
ures with unknown failure time and unknown system
parameters, the unknown bounds of disturbance), the
adaptive failure compensation controllers with structure
and adaptive laws are developed to achieve position
tracking.

(iii) For the unparameterizable system parameters, the non-
linear damping is introduced into the adaptive failure
compensation controller to achieve an arbitrary degree
of tracking accuracy.

The rest of this paper is organized as follows: In Section
II, the piecewise model with time-varying indicator functions
and piecewise disturbances of high-speed trains is briefly
introduced, and the actuator failure compensation issue is
formulated. In Section III, an adaptive controller is designed
for the healthy system with known disturbance bounds. In
Sections IV and V, the failure compensation controllers for
parameterized and unparameterized failures, are developed,
respectively. In Section VI, under time-varying faulty con-
dition, an adaptive compensation controller is presented for
the unknown disturbance bounds. In Section VII, an adaptive
compensation controller with nonlinear damping is proposed
for the unparameterizable system parameters. In Section VIII,
several simulation results for various operation conditions are
presented to verify the effectiveness of the presented failure
compensation controllers. Finally, conclusions are givenin
Section IX.

II. PROBLEM FORMULATION

Considered the unmodelled uncertainties and the changes
of the model parameters induced by the change of track
conditions (e.g., slope, curve, tunnel, etc.), the piecewise
model with time-varying indicator functions and piecewise
disturbances is constructed in this section.

A. Longitudinal Motion Dynamic Model

The general dynamical model of longitudinal motion of the
high-speed train is described as [18]

M(t)ẍ(t)=F (t)− ar(t)− br(t)v(t)− cr(t)v
2(t)

−Fg(t)− Fc(t) + d(t), (1)

wherex(t) is the displacement of the train,M(t) is the mass
of the train,F (t) is the traction force,ar(t) defines the train’s
rolling resistance component,br(t) defines the train’s linear
resistance,cr(t) defines the train’s nonlinear resistance;v(t)
is the speed of the train,Fg(t) is the force caused by motion
on the grade,Fc(t) is the force caused by motion on the
curve,d(t) is the unmodelled factor, and can be the wheel-rail
adhesion from rail or the nonlinear environmental disturbances
from weather conditions. The traction forceF (t) is generated
by the traction system in the train.

The model to describe the grade resistance forceFg(t) and
the curvature forceFc(t) is given by (see [19]):

Fg(t)=M(t)g sin θ(t), (2)

Fc(t)=0.004D(t)M(t), (3)

whereθ(t) is the slope angle of the current track,D(t) is the
degree of curvature.

Remark 1: There exist several models to express the curva-
ture forceFc(t), see [18]. Although the formulae are different,
the expressions of the curvature force are in the completely
parameterized form with the parameters related to the train
wheelsets and curve radius. Here, we use the curvature force
model from [19] to study the failure compensation problem.
The proposed method can be employed to the other formulae
of the curvature force. 2

Further, substituting expressions (2)-(3) into equation (1)
yields

M(t)ẍ(t)=F (t)−
(

ar(t) + br(t)ẋ(t) + cr(t)ẋ
2(t)

)

−M(t)g sin θ(t)− 0.004D(t)M(t) + d(t). (4)

As the displacement and velocity of a train can be measured
online by the speed sensors and track circuits, the change time
instants of these parameters can be obtained on-line.

Coefficients analysis. The mass is static when a train
operated on line, which implies that the variable massM(t)
can be modeled as a piecewise constant function depending
on the displacementx of the train.

According to the modelling methods in [18], it can be
concluded that changes of coefficientsar, br and cr in (1)
mainly depend on the current operation condition of the
train (including mass, speed, tunnel passing, etc.). These
coefficientsar, br, cr, θ(t) and D(t) can be considered as
constants in usual, when the whole train is running under a
certain operation condition.

However, there are also some cases that parameters are
varying even under some certain operation conditions. For
example, due to the train length, the grade resistance forcewill
increases to a maximum value from zero and decreases to zero,
when the train is climbing a slope. The value of parameter
cr(t) under the case that train just enters the tunnel, is different
from that when the whole train is running in the tunnel, if
the tunnel is long enough. For these rare typical situations, a
piecewise constant with a known time-varying function can be
introduced to improve the modelling accuracy.

Disturbance analysis. The disturbanced(t) represents the
unmodelled factors caused by changes of train operation
conditions, such as rail, wheel, weather, etc. When the train is
running under a certain operation condition, an upper bound
can be used for the disturbance. With changes of the train
operation condition, another upper bound should replace the
former one.

Using the existing modelling methods, the upper bound of
the disturbanced(t) can be obtained. When the train operates
on the horizontal line without slope or curvature under normal
environment, the upper bound of the disturbance termd(t),
can be chosen as zero or a small positive scalar. When there
is strong wind, the disturbance termd(t) should be changed
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with the wind. According to the wind strength that the train
can tolerate, the upper bound ofd(t) related to the strong
wind can be estimated from the experiment data. The wheel-
rail adhesion is formulated as a nonlinear function with time-
varying parameters, which is dependent on the wheel skid
condition. The regions of the time-varying parameters can
be obtained from the existing results about the wheel-rail
adhesion (see [20]). Thus, the upper bound ofd(t) contributed
to the wheel-rail adhesion can be calculated.

On the other hand, the train runs based on the operation
timetable, and always moves on the same track at a given time
interval and spatial interval, which makes the operation feature
of train dynamic model in repeatable pattern [21], [22]. Based
on the historical operating data, the bounds of the disturbances
can be estimated.

From now on, it is concluded that the upper bound of
the disturbance termd(t) can be modelled as piecewise with
known values. Due to the available information of the train
(speed, weather, rail, ect.,), the change time instants of the
train operation condition is available in real time. Similarly,
the change time of disturbance bound can be obtained in real
time as well.

Remark 2: Although common known bound can be em-
ployed to the disturbance, the piecewise model for distur-
bances is more accurate. Here, the piecewise constants are
assumed known, which can be obtained from the physical
experiments or practical measure. In the case when the
piecewise constants are unknown, modified adaptive laws can
be proposed, which will be considered later in this paper.
Moreover, there are other types of disturbances, such as that
discussed in [23] and [24], which could be considered in the
future work. 2

B. Piecewise Dynamic Model

From the above analysis, it concludes that the parameters
M(t), ar(t), br(t), cr(t), θ(t), D(t) and the bound ond(t)
are unknown piecewise constants or time-dependent functions,
and are dependent on the velocityẋ and positionx of the train.

Let m(t) =
1

M(t)
, a(t) =

ar(t)

M(t)
, b(t) =

br(t)

M(t)
, c(t) =

cr(t)

M(t)
, ϑ(t) = sin θ(t), and d̄(t) =

d(t)

M(t)
. Equation (4) can

be rewritten as

ẍ(t)=m(t)F (t)−
(

a(t) + b(t)ẋ(t) + c(t)ẋ2(t)
)

−gϑ(t)− 0.004D(t) + d̄(t), (5)

wherem(t), a(t), b(t), c(t), ϑ(t), D(t) and the bound on̄d(t)
are unknown piecewise constants or time-dependent functions.

To describe the parameters in equation (5) via a formal
mathematical expression, the indicator functionsχ̺i(t) are
introduced as:

χ̺i(t)=

{

Ψ̺i(t), if (x(t), ẋ(t)) ∈ Ωi,
0, otherwise,

(6)

where ̺ ∈ {m, a, b, c, ϑ,D, d̄}, Ψ̺i(t) is a known time-
depending function satisfyingΨ̺i(t) ∈ (0, 1]. Ψ̺i(t) could be

a constant 1 or a time-varying function. WhenΨ̺i(t) is chosen
as the constant 1, the indicator functionχ̺i(t) is the common
used 0-1 function, which would represent a piecewise constant
model, as often used in the literature. WhenΨ̺i(t) is a time-
varying function, it could represent in ramp or exponential
function form, which should increase from 0 to 1 and keep
in 1, or decrease from 1 to 0 and keep in 0. Considering that
the train mass can only change at the stations, the indicator
functionχmi(t) must be a 0-1 function.

During train operation, the region for all possible
system states(x(t), ẋ(t)) is denoted by Ω and its l
subregions are denoted byΩi, i = 1, . . . , l. Further, when
(x(t), ẋ(t)) ∈ Ωi, (m(t), a(t), b(t), c(t), ϑ(t), D(t), d̄(t)) =
(miχmi(t), aiχai(t), biχbi(t), ciχci(t), ϑiχϑi(t), DiχDi(t),
d̄i(t)χd̄i(t)), i = 1, . . . , l, wheremi, ai, bi, ci, ϑi, andDi are
unknown constants,|d̄i(t)| ≤ d0i and d0i is known constants.
Becausex(t) and ẋ(t) are available in real-time, the time
instants that(x(t), ẋ(t)) jumps from one regionΩi to another
Ωj(i 6= j), are known. So, the functionsχ̺i(t) defined in (6)
are known.

It is assumed that(x(t), ẋ(t)) only belongs to one region.
Let x1 = x and x2 = ẋ. The longitudinal motion dynamics
(4) can be described by:

ẋ1(t)=x2(t), (7)

ẋ2(t)=m(t)F (t) − a(t)− b(t)x2(t)− c(t)x2
2(t)

−gϑ(t)− 0.004D(t) + d̄(t), (8)

where

m(t)=

l
∑

i=1

miχmi(t), a(t) =

l
∑

i=1

aiχai(t), (9)

b(t)=
l

∑

i=1

biχbi(t), c(t) =
l

∑

i=1

ciχci(t),

ϑ(t)=

l
∑

i=1

ϑiχϑi(t), D(t) =

l
∑

i=1

DiχDi(t),

d̄(t)=

l
∑

i=1

d̄i(t)χd̄i(t), (10)

with mi, ai, bi, ci, ϑi, and Di being unknown constants;
|d̄i(t)| ≤ d0i with d0i being known constants, andχ̺i(t) being
the indicator functions defined in (6). Because bounds ond(t)
is known, and the masses of the empty and full train are also
known, the bounds of the term̄d(t) = d(t)/M(t) is available.

Remark 3: Here, the known time-varying functionsΨ̺i(t)
are introduced to improve the modelling accuracy, althoughthe
0-1 indicator function can represent the most situations. There
are only some typical situations, for which we choose some
more accurate indicator functions. Thanks to the repeated train
operating pattern, the functionsΨ̺i(t) can be obtained through
training the historical data or analyzing the train motion.On
the other hand, if the time-varying functionsΨ̺i(t) cannot be
obtained, the model with unparameterizable system parameter
is used to describe the high-speed train, whose controller
designed will be presented later in this paper. 2
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C. Actuator Failure Model

The actuator failures in traction system are always generated
by the failed equipments, which are modelled as constants
or time-dependent functions. Generally, two types of models
are usually used to describe the failure, i.e., parametric and
nonparametric expressions. In this subsection, these two types
of failure models will be introduced, and the adaptive failure
compensation controller design for each type of failure models
will be proposed.

Parameterized failure model. Considern motors in a high-
speed train. The completely parametric failure model can be
expressed as (see, e.g. [17])

Fj(t)= F̄j(t) = F̄j0 +

sj
∑

ρ=1

F̄jρfjρ(t), (11)

t≥ tj , j ∈ {1, 2, . . . , n},

wherej is the failure index,tj is the failure occurring time
instant,F̄j0 andF̄jρ are unknown constants. The basis signals
fjρ(t) are known, withsj being the number of the basis signals
of the jth actuator failure.

This failure model (11) covers several practical failure
conditions of the high-speed train actuators, which is shown
as follows:

1) Total failure. The motor stopping failure is a total failure.
Then, (11) can be written asFj(t) = F̄j(t) = F̄j0 = 0, with
F̄jρ = 0, for ρ = 1, . . . , sj .

2) Constant failure. The mechanical drives locked failure
can lead to the constant torque, which results in a constant
actuator failure. Then, (11) can be written asFj(t) = F̄j(t) =
F̄j0 = non-zero constant, with̄Fjρ = 0, for ρ = 1, . . . , sj .

3) Periodic form failure. The IGBT (Insulated Gate Bipolar
Transistor) failure (from PWM) can lead to the periodic failure
with approximate known frequency, which could be a sine
function. Then, (11) can be written asFj(t) = F̄j(t) =
F̄j1 sin(wt) for some knownw, with F̄j0 = 0, F̄j1 =
non-zero unknown constant and̄Fjρ = 0, for ρ = 2, . . . , sj .

Since there aren motors in the high-speed train, the
resultant traction forceF (t) is the sum of the forcesFj ,
j = 1, . . . , n, generated from thejth motor, given by:

F (t)=

n
∑

j=1

Fj(t). (12)

From (11) and (12), the input of system (7)-(8) can be
rewritten as

F (t)=kνν0(t) + ξT̟(t), (13)

ξ=[ξT1 , ξ
T
2 , . . . , ξ

T
n ]

T ,

ξj =[F̄j0, F̄j1, . . . , F̄jsj ]
T ∈ Rsj+1, (14)

̟(t)= [1, f11(t), . . . , f1s1(t), . . . , 1, fj1(t), . . . , fjsj (t), . . . ,

1, fn1(t), . . . , fnsn(t)]
T , for j = 1, . . . , n, (15)

whereν0(t) is a designed control signal, andkν is the actuator
failure pattern parameter withξ and̟(t) describing actuators
and the types of failures.

For adaptive actuator failure compensation design, an as-
sumption is given as: (A1) for the case that any up ton̄(n̄ < n)

actuators fail, the remaining healthy actuators can still achieve
the desired control objective. This assumption means that any
n̄ of then actuators may fail, and the parameterkν only takes
one integer in the interval[n − n̄, n] to reflect the different
failures.

Unparameterized failure model. Consider the incomplete-
ly parameterized failures. The mathematical model is givenby:

Fj(t)= F̄j(t) = F̄j0 +

sj
∑

ρ=1

F̄jρfjρ(t) + δ̄j(t), t ≥ tj ,(16)

where F̄j0, F̄jρ and fjρ(t) are defined in (11), and̄δj(t) is
an unknown and unparameterizable but bounded term. In this
case, the input of system (7)-(8) can be rewritten as

F (t)=kνν0(t) + ξT̟(t) +

n−kν
∑

j=1

δ̄j(t), (17)

whereν0(t) is a designed control signal,kν , ξ and̟(t) are
defined in (13)-(15).

For the unparameterized failure case, it is assumed that
Assumption (A1) holds for failure compensation design. The
term δ̄j(t) is introduced to describe the nonparametric part of
the failure, which can be changed to describe different failures.
As δ̄j(t) = 0, (16) is equivalent to the parametric failure (11).

Objective. The objective of this paper is to develop an
adaptive failure compensation controllerν0(t) for the above
modeled high-speed trains (7)-(8) with unknown system pa-
rameters, unparameterizabel disturbances, and unknown actu-
ator failures to guarantee the system stability and asymptotic
tracking properties.

III. A DAPTIVE CONTROLLER FORHEALTHY ACTUATORS

In this section, a backsteeping adaptive controller will be
designed for the healthy trains to guarantee the stability of the
closed-loop system and the statex1(t) to track the Distance-
To-Go (DTG) curvexm(t). The design procedure is given as
follows:

Step 1: Denote the tracking error as

z1(t)=x1(t)− xm(t), (18)

and introduce

z2(t)=x2(t)− α1(t), (19)

whereα1(t) is to be designed later. Then, from (7), it has

ż1(t)= ẋ1(t)− ẋm(t)

=z2(t) + α1(t)− ẋm(t). (20)

Choosing the design functionα1(t) as

α1(t)=−r1z1(t) + ẋm(t), r1 > 0 (21)

and considering the first partial positive definite function

V1=
1

2
z21 . (22)
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From (20) and (21), the time derivative ofV1 is given by:

V̇1= z1(t)ż1(t)

= z1(t) (z2(t)− r1z1(t) + ẋm(t)− ẋm(t))

=−r1z
2
1(t) + z1(t)z2(t). (23)

Step 2: From (19) and (8), it follows that

ż2(t)= ẋ2(t)− α̇1(t)

=

l
∑

i=1

(

miχi(t)F (t)− aiχi(t)− biχi(t)x2(t)

−ciχi(t)x
2
2(t)− gϑiχi(t)− 0.004Diχi(t)

+d̄i(t)χi(t)

)

− α̇1(t). (24)

Now, (20) and (24) can be viewed to be stabilized byα1(t)
given in (21) with respect to the Lyapunov function

V2=V1 +
1

2
z22 +

l
∑

i=1

1

2

(

Γ−1
ai ã

2
i + Γ−1

bi b̃2i + Γ−1
ci c̃

2
i

+Γ−1
ϑi ϑ̃

2
i + Γ−1

DiD̃
2
i +

mi

Γmi

ρ̃2i

)

, (25)

whereΓai, Γbi, Γci, Γϑi, ΓDi andΓmi are positive constants,
ãi = ai−âi(t), b̃i = bi− b̂i(t), c̃i = ci− ĉi(t), ϑ̃i = ϑi−ϑ̂i(t),
D̃i = Di − D̂i(t), with âi(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t) being
the estimates ofai, bi, ci, ϑi, andDi. ρ̃i = ρi − ρ̂i(t), ρ̂i(t)
is the estimate ofρi = 1

mi
. The associate adaptive laws used

to estimate these parameters will be provided later.
Using (8), the time derivative ofV2 is

V̇2=−r1z
2
1(t) + z1(t)z2(t) + z2ż2(t) +

l
∑

i=1

(

Γ−1
ai ãi(t)

˙̃ai(t)

+Γ−1

bi b̃i(t)
˙̃
bi(t) + Γ−1

ci c̃i(t)
˙̃ci(t) + Γ−1

ϑi ϑ̃i(t)
˙̃
ϑi(t)

+Γ−1
DiD̃i(t)

˙̃Di(t) +
mi

Γmi

ρ̃i(t) ˙̃ρi(t)

)

=−r1z
2
1(t) + z2(t)(x1(t)− xm(t))

+z2(t)
l

∑

i=1

(

miχi(t)F (t) − âiχi(t)− b̂iχi(t)x2(t)

−ĉiχi(t)x
2
2(t)− gϑ̂iχi(t)− 0.004D̂iχi(t) + d̄i(t)χi(t)

)

+z2(t)(r1(ẋ1(t)− ẋm(t))− ẍm(t))

+

l
∑

i=1

(

Γ−1
ai ãi(t)

(

˙̂ai(t) + Γaiz2(t)χi(t)
)

+Γ−1

bi b̃i(t)
(

˙̂
bi(t) + Γbiz2(t)χi(t)x2(t)

)

+Γ−1
ci c̃i(t)

(

˙̂ci(t) + Γciz2(t)χi(t)x
2
2(t)

)

+Γ−1
ϑi ϑ̃i(t)

(

˙̂
ϑi(t) + Γϑiz2(t)χi(t)g

)

+Γ−1
DiD̃i(t)

(

˙̂
Di(t) + 0.004ΓDiz2(t)χi(t)

)

+
mi

Γmi

ρ̃i(t) ˙̃ρi(t)

)

. (26)

Choose the adaptive laws forâi(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t)

˙̂ai(t)=−Γaiz2(t)χai(t), (27)
˙̂
bi(t)=−Γbiz2(t)χbi(t)x2(t), (28)
˙̂ci(t)=−Γciz2(t)χci(t)x

2
2(t), (29)

˙̂
ϑi(t)=−Γϑiz2(t)χϑi(t)g, (30)
˙̂
Di(t)=−0.004ΓDiz2(t)χDi(t). (31)

Then the time derivative ofV2 can be expressed as

V̇2=−r1z
2
1(t) + z2(t)

(

η(t) +

l
∑

i=1

(miχi(t)F (t)

−ζi(t)χi(t) + d̄i(t)χi(t))

)

+
l

∑

i=1

mi

Γmi

ρ̃i(t) ˙̃ρi(t)

whereη(t) andζi(t) are given as

η(t)=x1(t)− xm(t) + r1(ẋ1(t)− ẋm(t))− ẍm(t), (32)

ζi(t)= âiχai(t) + b̂iχbi(t)x2(t) + ĉiχci(t)x
2
2(t)

+gϑ̂iχϑi(t) + 0.004D̂iχDi(t). (33)

Considering that the indicator functionχmi(t) can only be 0-1
function, the expression oḟV2 can be rewritten as

V̇2=−r1z
2
1(t) + z2(t)

l
∑

i=1

miχmi(t)

(

F (t)− ρiζi(t)

+ρid̄i(t)χd̄i(t) + ρiη(t)

)

+

l
∑

i=1

mi

Γmi

ρ̃i(t) ˙̃ρi(t)

=−r1z
2
1(t) + z2(t)

l
∑

i=1

miχmi(t)

(

F (t)− ρiζi(t)

+ρid̄i(t)χd̄i(t) + ρiη(t) + ρi(t)r2z2(t)

)

−r2z
2
2(t) +

l
∑

i=1

mi

Γmi

ρ̃i(t) ˙̃ρi(t), (34)

wherer2 > 0.
The controllerF (t) is chosen as

F (t)=

l
∑

i=1

χmi(t)

(

νdi(t)χd̄i(t) + ρ̂i(t)ζi(t)

−ρ̂i(t)η(t) − ρ̂i(t)r2z2(t)

)

, (35)

whereνdi(t) is designed to compensate the unmodeled distur-
bancedi(t) for stability and tracking,̂ρi(t) is updated from
the adaptive law as follows:

νdi(t)=−
1

λ0
i

ǫ0i sgn[z2(t)], (36)

˙̂ρi(t)=−Γmiz2(t)(ζi(t)− η(t)− r2z2(t))χmi(t), (37)

with ρ0m being a known lower bound onmi: mi ≥ ρ0m, and
λ0
i being a design parameter such thatλ0

i ≥ d0i .
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Using the controller (35), with (36) and (37),̇V2 can be
rewritten by

V̇2=−r1z
2
1(t)− r2z

2
2(t) +

l
∑

i=1

(

−
mi

ρ0m
λ0
i |z2(t)|χd̄i(t)

+z2(t)d̄i(t)χd̄i(t)

)

≤−r1z
2
1(t)− r2z

2
2(t). (38)

Stability analysis. SinceV̇2 ≤ −r1z
2
1(t)− r2z

2
2(t) ≤ 0, all

the variablesz1(t) = x1(t) − xm(t), z2(t) = x2(t) − α1(t),
ξ− ξ̂(t), ai−âi(t), bi− b̂i(t), ci− ĉi(t), ϑi−ϑ̂i(t), Di−D̂i(t),
ρi − ρ̂i(t), are bounded, and so arez1(t), ξ̂(t), âi(t), b̂i(t),
ĉi(t), ϑ̂i(t), D̂i(t), and ρ̂i(t). From (21),α1(t) is bounded,
so isx2(t). Then, from (35), the boundedness of the control
F (t) is ensured. Thus, all signals in the closed-loop system
are bounded.

SinceV2 is bounded,
∫

∞

0
z21(τ)dτ < ∞ and

∫

∞

0
z22(τ)dτ <

∞. According to (20), ż1(t) is bounded. It shows that
limt→∞ z1(t) = 0, which implies that limt→∞(x1(t) −
xm(t)) = 0.

It should be note that the control signal in (36) is not
continuous. ThuṡV2 is negative with discontinuous right-hand-
side. In this case, the system solution is defined in the Filippov
sense [25], [26].

Now, we obtain the following adaptive controller design
method:

Theorem 1: The adaptive controller (35), with the adaptive
scheme (27)-(31) and (36)-(37) applied to the system (7)-(8),
guarantees that all the closed-loop signals are bounded andthe
tracking errore(t) = x1(t)−xm(t) satisfieslimt→∞ e(t) = 0.

From (21), α̇(t) is bounded, due to the boundeḋz1(t)
and ẋm(t). According to (24),ż2(t) is bounded. It shows
that limt→∞ z2(t) = 0. Further, with boundedx2(t) and
ẋm(t), it follows that limt→∞ x2(t) − ẋm(t) = 0, which
implies that thex2(t) can trackẋm(t). For high-speed train,
ẋm(t) represents the desired speed of the train. Therefore,
the adaptive controller (35) can achieve both the distance and
speed tracking, simultaneously. To design the tracking curve,
it is necessary to consider the constraint for distance and speed
of the train under the different operating conditions.

IV. A DAPTIVE ACTUATOR FAILURE COMPENSATION

CONTROLLER

In this section, a failure compensation controller will be
designed to guarantee the closed-loop system to be stable and
the statex1(t) to track the desired curvexm(t) in the presence
of actuator failures. The parameters of the train dynamic model
are unknown constants with known bounds on disturbance, but
uncertain actuator failures may occur. The design procedure
is described as follows:

Step 1: This step is the same as that for healthy case in
Section III. The tracking errorz1(t) and the parameterz2(t)
are defined in (18) and (19), respectively. The first partial
positive definite functionV1 is chosen as (22).

Step 2: From z2(t) = x2(t)− α1(t), (8) and (13),

ż2(t)=

l
∑

i=1

(miχmi(t)(kνν0(t) + ξT̟(t))− aiχai(t)

−biχbi(t)x2(t)− ciχci(t)x
2
2(t)− gϑiχϑi(t)

−0.004DiχDi(t) + d̄i(t)χd̄i(t))− α̇1(t). (39)

For fault compensation problem, the dynamics ofz1(t) and
z2(t) can be viewed to be stabilized byα1(t) given in (21)
with respect to the following candidate Lyapunov function

V2=V1 +
1

2
z22 +

l
∑

i=1

1

2

mi

Γkν

ρ̃2kν +

l
∑

i=1

mi

2
Γ−1

ξ ξ̃T ξ̃

+

l
∑

i=1

1

2

(

Γ−1
ai ã

2
i + Γ−1

bi b̃2i + Γ−1
ci c̃

2
i + Γ−1

ϑi ϑ̃
2
i

+Γ−1
DiD̃

2
i +

mi

Γmi

ρ̃2i

)

, (40)

whereV1 is defined in (22),Γkν , Γξ, Γai, Γbi, Γci, Γϑi, ΓDi

and Γmi are positive constants,̃ξ = ξ − ξ̂(t), ãi = ai −
âi(t), b̃i = bi − b̂i(t), c̃i = ci − ĉi(t), ϑ̃i = ϑi − ϑ̂i(t),
D̃i = Di − D̂i(t), with ξ̂(t), âi(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t)
being the estimates ofξ, ai, bi, ci, ϑi, Di, respectively, and
ρ̃kν = ρkν − ρ̂kν(t), ρ̃i = ρi − ρ̂i(t), with ρ̂kν(t) and ρ̂i(t)
being the estimate ofρkν = 1

kν
andρi = 1

mikν
, respectively.

It should be noted that there are two types (sets) of time
intervals: one set of known time intervals during which the
system parameters are constant and unknown, and one set
of unknown time intervals during which the actuator failure
parameters are constant and unknown (as the failure pattern
is fixed). To deal with the first type of known time intervals,
we have introduced the indicator functionsχ̺i(t) to expand
the system parametrization to include all possible piecewise
values of system parameters, that is, the parametersai, bi, ci,
ϑi, Di and 1

mi
(related withρi) are constant for all such time

intervals. To deal with the second type of unknown time inter-
vals, let such time intervals be(Tp, Tp+1), p = 0, 1, . . . , M̄ ,
that is, fort ∈ (Tp, Tp+1), the actuator failure pattern is fixed
and the parameters in (13) are constant, which implies that the
parametersξ andkν in (40) are constant. It should be noted
that ρi = 1

mikν
changes with the indicator functionχmi(t)

and the failure pattern. Let{Tq}
∞

q=1 denote the known time
instants at which (7)-(8) switches between different modes.
Without loss of generality, we assume thatTp ∈ (Tq, Tq+1)
andTp+1 > Tq+1. Then, the positive definite functionV2 is
continuous and differentiable on the time intervals(Tq, Tp).

The adaptive laws for̂ai(t), b̂i(t), ĉi(t), ϑ̂i(t), and D̂i(t)
are chosen the same as that of health case (27)-(31).ξ̂(t) is
updated by

˙̂
ξ(t)=Γξz2(t)̟(t), (41)

Then, From equations (21), (23) and (39), the time derivative
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of V2 is

V̇2=−r1z
2
1(t) + z2(t)

l
∑

i=1

mikνχmi(t)

(

ν0(t) + ρkν ξ̂
T (t)̟(t)

−ρiζi(t) + ρid̄i(t)χd̄i(t) + ρiη(t) + ρir2z2(t)

)

−r2z
2
2(t) +

l
∑

i=1

mi

Γkν

ρ̃kν(t) ˙̃ρkν(t) +

l
∑

i=1

mi

Γmi

ρ̃i(t) ˙̃ρi(t),

wherer2 > 0, η(t) andζi(t) are given as (32) and (33).
The control signalν0(t) is designed as

ν0(t)=−ρ̂kν(t)ξ̂
T (t)̟(t) +

l
∑

i=1

χmi(t)

(

νdi(t)

+ρ̂i(t)ζi(t)− ρ̂i(t)η(t) − ρ̂i(t)r2z2(t)

)

, (42)

whereρ̂i(t) is given as (37),νdi(t) is designed to compensate
unmodeled disturbancedi(t) to guarantee the system stability
and tracking performance, and̂ρkν(t) is updated from the
adaptive law

νdi(t)=−
1

ρ0i
λ0
i sgn[z2(t)], (43)

˙̂ρkν(t)=−Γkνz2(t)ξ̂
T (t)̟(t), (44)

with ρ0i being a known lower bound onmi: mikν ≥ ρ0i , and
λ0
i being a design parameter such thatλ0

i ≥ d0i .
The controller (42), with the signalνdi(t) defined in (43)

and the adaptive control laws in (37) and (44), leads to

V̇2=−r1z
2
1(t)− r2z

2
2(t) +

l
∑

i=1

(

−
mikν
ρ0i

λ0
i |z2(t)|χd̄i(t)

+z2(t)d̄i(t)χd̄i(t)

)

≤−r1z
2
1(t)− r2z

2
2(t). (45)

It should be noted that the values of piecewise constant pa-
rameters, also with the amplitudes of failure parameters could
change, during the system operation. We denote(Tp, Tp+1),
p = 0, 1, . . . , M̄ , with T0 = 0, be time intervals, when the
actuator failure pattern is fixed, which means that the actuators
only fail at timeTp, for p = 0, 1, . . . , M̄ . Under Assumption
(A1), TM̄+1 = ∞. Meanwhile, let{Tq}

∞

q=1 denote the known
time instants at which (7)-(8) switches between different
modes. That is, the unknown parametersρkν andξ related to
the failure parameterskν andξ, change their values, at timeTp,
p = 0, 1, . . . , M̄ , while the unknown system parametersai, bi,
ci, ϑi, andDi change their values, at timeTq, q = 1, . . . ,∞,
andρi (related withmi andkν ) changes its value, at timeTq

andTp, for q = 1, . . . ,∞ andp = 0, 1, . . . , M̄ .
Stability analysis. For the functionV2 in (40), the term

containingρ̃kν and ξ̃ about the failures is different from the
term in (25) (last term, containing̃ai, b̃i, c̃i, ϑ̃i, D̃i and
ρ̃i) about the model parameters, because the switches of the
failures are achieved via the tracking error based adaptivelaws
instead of the indicator functionsχ̺(t) in (6). Due to the
piecewise constant parametersρkν , ξ, ai, bi, ci, ϑi, Di andρi,

V2(·) as a function oft is not continuous. With the estimation
errors z1(t), z2(t) and the adaptive laws in (27)-(31), (37),
(41) and (44), the time derivative ofV2 for t ∈ (Tq, Tp),
p = 0, 1, . . . , M̄ , becomes

V̇2≤−r1z
2
1(t)− r2z

2
2(t). (46)

Since there are only a finite number of failures in the system,
V2(TM̄ ) is finite, and from

V̇2≤−r1z
2
1(t)− r2z

2
2(t) ≤ 0, (47)

it follows that all the variablesz1(t) = x1(t) − xm(t),
z2(t) = x2(t)−α1(t), ξ− ξ̂(t), ai− âi(t), bi− b̂i(t), ci− ĉi(t),
ϑi − ϑ̂i(t), Di − D̂i(t), ρkν − ρ̂kν(t), and ρi − ρ̂i(t) are
bounded, and so arez1(t), ξ̂(t), âi(t), b̂i(t), ĉi(t), ϑ̂i(t),
D̂i(t), ρ̂kν(t) and ρ̂i(t). From (21),α1(t) is bounded, so is
x2(t). Then, with the failure compensation controller (42), the
boundedness ofν0(t) is ensured. Thus, all signal in the closed-
loop system are bounded. Further, (47) impliesz1(t) ∈ L2 and
so limt→∞ z1(t) = 0.

It should be noted that the control signal in (43) is not
continuous, theṅV2 is negative with discontinuous right-hand-
side. The system solution is defined in the Filippov sense [25],
[26]. The performance of the adaptive controller to obtain the
stability and tracking can be summarized as follows:

Theorem 2: The adaptive failure compensation controller
(42), with the adaptive scheme (27)-(31), (37), (41) and (44)
applied to the system (7)-(8) with actuator failures (13)-(15),
guarantees that all the closed-loop signals are bounded andthe
tracking errore(t) = x1(t)−xm(t) satisfieslimt→∞ e(t) = 0.

Similar to the convergence discussion in Section III, we
havelimt→∞(x2(t)−ẋm(t)) = 0. The designed adaptive com-
pensation controller (42) can achieve the distance and speed
tracking, simultaneously. The proposed adaptive compensation
controller is designed effectively for the complete param-
eterized high-speed train faulty model with known bounds
of disturbance. For the following sections, the more general
model with the different mathematical formulations of the
unparameterizable parameters will be discussed.

V. DESIGN FORUNPARAMETERIZABLE ACTUATOR

FAILURES

Recall the incompletely parameterized failure model (16)
and (17) in Section II. In this section, the more general actuator
failure problem will be considered.

The design procedure is similar as that of the parameteriz-
able case in Section IV. Due to the unparameterizable actuator
failures, the controllerν0(t) is designed as

ν0(t)=−ρ̂kν(t)ξ̂(t)̟(t) +

n−kν
∑

j=1

νsj(t) +

l
∑

i=1

χmi(t)

(

νdi(t)

+ρ̂i(t)ζi(t)− ρ̂i(t)η(t) − ρ̂i(t)r2z2(t)

)

, (48)

whereνsj(t) andνdi(t) are designed to compensate unknown
δ̄j(t) and d̄i(t) for stability and tracking;η(t) and ζi(t) are
defined in (32) and (33) with the estimatesâi(t), b̂i(t), ĉi(t),
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ϑ̂i(t), D̂i(t) being updated by the adaptive laws in (27)-(31);
ρ̂i(t), ξ̂(t) andρ̂kν(t) are given by the adaptive laws (37), (41)
and (44).

The design signalsνsj(t) andνdi(t) are designed:

νsj(t)=−
1

ρ0kν
δ0j sgn[z2(t)], (49)

νdi(t)=−
1

ρ0i
λ0
i sgn[z2(t)], (50)

whereρ0kν andρ0i are known lower bounds onkν andmikν ,
respectively:kν ≥ ρ0kν , mikν ≥ ρ0i , andδ0j ≥ |δ̄j(t)|, λ0

i is a
design parameter such thatλ0

i ≥ d0i .
Using the Lyapunov function (40), the above adaptive

control scheme leads to

V̇2=−r1z
2
1(t)− r2z

2
2(t) +

l
∑

i=1

n−kν
∑

j=1

(

miz2(t)δ̄j(t)χmi(t)

+z2(t)d̄i(t)χd̄i(t)−
mikν
ρ0kν

δ0j |z2(t)|χmi(t)

−
mikν
ρ0i

λ0
i |z2(t)|χd̄i(t)

)

≤−r1z
2
1(t)− r2z

2
2(t). (51)

Stability analysis. Due to the finite number of failures in the
system,V2(TM̄ ) is finite. From

V̇2=−r1z
2
1(t)− r2z

2
2(t) ≤ 0, (52)

the variablesz1(t) = x1(t) − xm(t), z2(t) = x2(t) − α1(t),
ξ− ξ̂(t), ai−âi(t), bi− b̂i(t), ci− ĉi(t), ϑi−ϑ̂i(t), Di−D̂i(t),
ρkν − ρ̂kν(t), ρi − ρ̂i(t), are bounded, and so arez1(t), ξ̂(t),
âi(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t), ρ̂kν(t) and ρ̂i(t). Then, with
the structure of the failure compensation controller (48),the
boundedness ofν0(t) is ensured. Further, (52) impliesz1(t) ∈
L2 and solimt→∞ z1(t) = 0. The system solution is defined
in the Filippov sense [25], [26].

For the unparameterizable actuator failures, we have the
following conclusion:

Theorem 3: The adaptive failure compensation controller
(48), with the signals (32)-(33) and (49)-(50), and adaptive
scheme (27)-(31), (37), (41), and (44) applied to the sys-
tem (7)-(8) under actuator failures (16), guarantees that all
the closed-loop signals are bounded and the tracking error
e(t) = x1(t)− xm(t) satisfieslimt→∞ e(t) = 0.

Similar to the convergence discussion in Section III, we
have thatlimt→∞(x2(t)− ẋm(t)) = 0. For the unparameteriz-
able failure case considered here, there are two type parameter
variations caused by either actuator failure or system mode
changes, also the disturbance and unparameterizable failure
term. The proposed controller (48) is parameterized, so that
both parameter variations and unparameterizable terms can
be dealt with. To handle the unparameterizable terms from
disturbances and failures, the signalsνsj(t) andνdi(t) in (49)
and (50), are employed to guarantee the tracking performance
via the use of a piecewise Lyapunov functionV2.

VI. D ESIGN WITH UNKNOWN DISTURBANCE BOUNDS

The disturbances considered in the previous sections, are
bounded with known bounds. If the disturbance bounds are
unknown, some methods should be taken to estimate the
bounds. In this section, we will propose a failure compen-
sation controller for the case that the disturbance bounds are
unknown.

The some design steps are same as that for the parameter-
izable case in Section III. Due to the unknown disturbance
bounds, Lyapunov functionV2 should be changed and chosen
as:

V2=V1 +
1

2
z22 +

l
∑

i=1

1

2

mi

Γkν

ρ̃2kν +

l
∑

i=1

mi

2
Γ−1

ξ ξ̃T ξ̃

+

l
∑

i=1

1

2

(

Γ−1
ai ã

2
i + Γ−1

bi b̃2i + Γ−1
ci c̃

2
i + Γ−1

ϑi ϑ̃
2
i

+Γ−1
DiD̃

2
i + Γ−1

d0

i

(λ̃0
i )

2 +
mi

Γmi

ρ̃2i

)

, (53)

whereV1 is defined in (22),Γkν , Γξ, Γai, Γbi, Γci, Γϑi, ΓDi,
Γmi andΓd0

i
are positive constants,̃ξ = ξ − ξ̂(t), ãi = ai −

âi(t), b̃i = bi − b̂i(t), c̃i = ci − ĉi(t), ϑ̃i = ϑi − ϑ̂i(t),
D̃i = Di−D̂i(t), λ̃0

i = λ0
i−λ̂0

i (t) with ξ̂(t), âi(t), b̂i(t), ĉi(t),
ϑ̂i(t), D̂i(t), λ̂0

i (t) being the estimates ofξ, ai, bi, ci, ϑi, Di,
andλ0

i , respectively, and̃ρkν = ρkν − ρ̂kν(t), ρ̃i = ρi− ρ̂i(t),
with ρ̂kν(t) and ρ̂i(t) being the estimate ofρkν = 1

kν
and

ρi = 1

mikν
, respectively.λ0

i is an unknown parameter such
thatλ0

i ≥ d0i .
The adaptive laws for̂ai(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t) and

ξ̂(t) are given as (27)-(31) and (41).λ̂0
i (t) is updated by

˙̂
λ0
i (t)=−Γd0

i
z2(t)sgn[z2(t)]χd̄i(t). (54)

The controllerν0(t) is designed as

ν0(t)=−ρ̂kν(t)ξ̂(t)̟(t) +
l

∑

i=1

χmi(t)

(

νdi(t)

+ρ̂i(t)ζi(t)− ρ̂i(t)η(t) − ρ̂i(t)r2z2(t)

)

, (55)

where η(t) and ζi(t) are defined in (32) and (33) with the
estimateŝai(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t) being updated by the
adaptive laws in (27)-(31);̂ρi(t), ξ̂(t) andρ̂kν(t) are given by
the adaptive laws (37), (41) and (44).νdi(t) are designed to
compensate unmodeled disturbancedi(t) as

νdi(t)=−
1

ρ0m
λ̂0
i (t)sgn[z2(t)]χd̄i(t), (56)

whereρ0i is a known lower bound onmikν : mikν ≥ ρ0i , and
λ̂0
i (t) is updated by the adaptive law (54).
The above adaptive control scheme leads to

V̇2=−r1z
2
1(t)− r2z

2
2(t)

+

l
∑

i=1

(

−
mi

ρ0m
λ̂0
i (t)|z2(t)|χd̄i(t) + λ̂0

i (t)|z2(t)|χd̄i(t)

−|z2(t)|λ
0
iχd̄i(t) + z2(t)d̄i(t)χd̄i(t)

)

≤−r1z
2
1(t)− r2z

2
2(t) ≤ 0. (57)
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Stability analysis. Similar to the stability analysis in Sec-
tion V, it is concluded thatz1(t) = x1(t) − xm(t), z2(t) =
x2(t) − α1(t), ξ − ξ̂(t), ai − âi(t), bi − b̂i(t), ci − ĉi(t),
ϑi− ϑ̂i(t), Di−D̂i(t), λ0

i − λ̂0
i (t), ρkν− ρ̂kν(t), ρi− ρ̂i(t), are

bounded, and so arez1(t), ξ̂(t), âi(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t),
λ̂0
i (t), ρ̂kν(t) and ρ̂i(t). Then, with the failure compensation

controller (48), the boundedness ofν0(t) is ensured. Further,
(52) impliesz1(t) ∈ L2 and solimt→∞ z1(t) = 0.

For the unknown disturbance bound case, the following
conclusion can be obtained:

Theorem 4: The adaptive failure compensation controller
(55), with signal (56) and the adaptive scheme (27)-(31), (37),
(41), (44), and(54) applied to the system (7)-(8) with actuator
failures (13)-(15), guarantees that all closed-loop signals are
bounded and the tracking errore(t) = x1(t)− xm(t) satisfies
limt→∞ e(t) = 0.

The failure compensation controller designed in this section
is for the case when the bounds on disturbances are unknown.
To deal with the unknown bounds, the adaptive law (54) is uti-
lized to estimate the unknown designed parameterλ0

i (shown
in (36) or (43) or (50)), which is designed for the known
bound case. The proposed method can be easily extended
to the unparameterizable failure case, through an additional
adaptive law to estimate the unknown designed parameterδ0i .
To prevent possible parameter drift in the adaptive law (54)and
other adaptive laws in the presence of possible system noises
and additional disturbances, robust adaptation techniques in
[27] can be employed.

VII. FAILURE COMPENSATIONCONTROLLER FOR

UNPARAMETERIZABLE SYSTEM PARAMETERS

In the above sections, the system parameters of the high-
speed train dynamic model are completely parameterized,
and the bounded disturbance is used to express the unpa-
rameterizable uncertain time variations. In this section,we
show that even when there are unparameterizable system
parameters with unknown upper bounds, we can design the
failure compensation controller to ensure boundedness of the
tracking errors of the closed-loop system.

The longitudinal motion dynamics (4) with unparameteriz-
able system parameters can be expressed as:

ẋ1(t)=x2(t), (58)

ẋ2(t)=m(t)F (t) − a(t)− (b(t) + ∆b(t))x2(t)

−(c(t) + ∆c(t))x2
2(t)− gϑ(t)− 0.004D(t)

+d̄(t), (59)

wherem(t), a(t), b(t), c(t), ϑ(t), D(t), andd̄(t) are defined in
(9) and (10);∆b(t) and∆c(t) are bounded unparameterizable
system parameters, and the upper bounds on|∆b(t)| and
|∆c(t)| could be unknown. The unparameterizable part of
parametera(t) can belong tod̄(t).

Recall the actuator failure (13)-(15). The control signal

ν0(t) is designed as

ν0(t)=−ρ̂kν(t)ξ̂
T (t)̟(t) +

l
∑

i=1

χmi(t)

(

νdi(t) + ρ̂i(t)ν∆(t)

+ρ̂i(t)ζi(t)− ρ̂i(t)η(t)− ρ̂i(t)r2z2(t)

)

, (60)

whereν∆(t) is designed to compensate unknown∆b(t) and
∆c(t) for stability; η(t) and ζi(t) are defined in (32) and
(33) with the estimateŝai(t), b̂i(t), ĉi(t), ϑ̂i(t), D̂i(t) being
updated by the adaptive laws in (27)-(31);ξ̂(t) andρ̂kν(t) are
given by the adaptive laws (41) and (44);νdi(t) is given as
(43). ρ̂i(t) is updated from the adaptive law

˙̂ρi(t)=−γmiz2(t)(−ν∆(t) + ζi(t)− η(t)

−r2z2(t))χmi(t). (61)

The design signalsν∆(t) is given by

ν∆(t)=−k1z2(t)x
2
2(t)− k2z2(t)x

4
2(t), (62)

with k1 > 0 andk2 > 0.
Using the Lyapunov function (40), the above adaptive

control scheme leads to

V̇2=−r1z
2
1(t)− r2z

2
2(t) +

l
∑

i=1

(

−
mikν
ρ0i

λ0
i |z2(t)|χd̄i(t)

+z2(t)d̄i(t)χd̄i(t)

)

+ ν∆(t)−∆b(t)z22(t)x2(t)

−∆c(t)z22(t)x
2
2(t). (63)

Stability analysis. Takingν∆(t), we obtain

V̇2≤−r1z
2
1(t)− r2z

2
2(t) +

(

− k1z
2
2(t)x

2
2(t)

+b0|z2(t)||x2(t)| − k2z
2
2(t)x

4
2(t) + c0|z2(t)|x

2
2(t)

)

.

in which b0 and c0 are (unknown) upper bounds on|∆b(t)|
and |∆c(t)|. The term

−k1z
2
2(t)x

2
2(t) + b0|z2(t)||x2(t)| − k2z

2
2(t)x

4
2(t)

+c0|z2(t)|x
2
2(t) (64)

attains a maximum value( b2
0

4k1

+
c2
0

4k2

) at |x2(t)| =
k1c0
k2b0

and

|z2(t)| =
k2b

2

0

2k2

1
c0

. Therefore,

V̇2≤−r1z
2
1(t)− r2z

2
2(t) +

(

b20
4k1

+
c20
4k2

)

. (65)

Sincer1 andr2 are positive constants, it is always true thatV̇2

is negative outside some ball. It concludes that for any initial
statesz1(0) andz2(0), the solution of the closed-loop system
is uniformly bounded. The termν∆(t) (62) is called nonlinear
damping. Recall the definition ofz1(t) andz2(t) in (18) and
(19). It can concluded that the distance and speed tracking
errors are bounded. We give the conclusion in the following
theorem.

Theorem 5: The adaptive failure compensation controller
(60), with the adaptive scheme (27)-(33), (41), (43) and (44)



10

applied to the system (58)-(59) with actuator failures (13)-(15),
guarantees that all the closed-loop signals are bounded.

Remark 4: For the nonlinear damping termν∆(t), there are
two designed constantsk1 > 0 andk2 > 0, which determine
the convergent ball oḟV2. From (65), it can be seen thatk1
and k2 can be chosen to make the constant termb

2

0

4k1

+
c2
0

4k2

as small as desired, i.e., the tracking errors can achieve an
arbitrary degree of accuracy. The larger the constantsk1 > 0
andk2 > 0 are, the smaller the tracking errorsz1 andz2 are.
In practice,k1 and k2 are chosen to satisfy the acceptable
accuracy of the tracking errors. 2

For the high-speed train dynamic model (58)-(59), the time-
varying indicator functions are used to parameterize the time-
varying system parameter for adaption, while the remaining
unparameterizable parameters are kept, which are dealt with
using nonlinear dampingν∆(t) in control, to an arbitrary
degree of accuracy.

From now on, several different cases about the system
failures and disturbances with unknown parameters have been
investigated to design the adaptive controllers. Considering
the repeatable pattern of the high-speed trains, the case that
the bounds of the disturbances and unparameterizable failures
are known is the most popular. Thus, the adaptive controllers
proposed in this paper satisfy the real requirements of the
high-speed trains.

VIII. S IMULATION STUDY

In this section, the simulation study on a high-speed train
are presented for various operation conditions, to demonstrate
the effectiveness of the proposed adaptive controllers. The
parameters in the simulation are from a real CRH type train,
which contains 8 vehicles (4 locomotives and 4 carriages).

Simulation conditions. According to [1], there are several
operating conditions including acceleration, reacceleration,
constant speed, deceleration, redeceleration, and slowing down
until fully stop. The tracking distance curve, as shown in Fig.
1 (solid line), is considered.

Form the tracking curve in Fig. 1, the train does not stop. So
the mass of the train is chosen as a constant, i.e.,Mi = M =
400 ton. Considering the tunnel, slope and curvature during
the train running, 4 modes are set for the healthy system, in
which the parametersai (kN), bi (kN s/m), ci (kN s2/m2),
ϑi (degree), andDi are defined in equations (9)-(10), and the
unit of time is sec.

(i) During 0 ≤ t < 400, the train starts. Then,a1 = 8.63×
10−3, b1 = 7.295 × 10−6, c1 = 1.12 × 10−6, θ1 = 0,
andD1 = 0.

(ii) For 400 ≤ t < 800, the train enters a tunnel. Then,
a2 = 8.63×10−3, b2 = 7.295×10−6, c2 = 9.12×10−6,
θ2 = 0, andD2 = 0.

(iii) At t = 800, the train leaves the tunnel and travels in
a curvature and slope track. During800 ≤ t < 1400,
a3 = 8.63×10−3, b3 = 7.295×10−6, c3 = 1.12×10−6,
θ3 = 0.018, andD3 = 0.34.

(iv) After t = 1400, the train moves in the open air and
horizontal track to slow down until fully stop. For

1400 ≤ t < 2000, a4 = 8.63×10−3, b4 = 7.295×10−6,
c4 = 1.12× 10−6, θ4 = 0, andD4 = 0.

The indicator functions for the parametersa, b, c, D are chosen
as 0-1 functions, whileχθ3 = 0.25(t−800) for t ∈ [800, 804].

Case 1 (healthy mode). For the healthy high-speed train,
the disturbances are set as:

d(t)=















100 sin(0.03t), t ∈ [0, 400);
200(1− e−10t), t ∈ [400, 800);
100, t ∈ [800, 1400);
0, t ∈ [1400, 2000].

(66)

Choose the initial sates asx(0) = [0.55 0]T , and the initial
parameter estimates as90% of their nominal values. The gains
of the adaptive laws in (27)-(31) are chosen as2.

Case 2 (parameterizable failure mode). In this case, 16
motors are considered to provide the traction force, i.e.,n =
16. Consider the same control scheme is applied for each same
type motor. The effectiveness of the failed motors is equivalent
to the failure in one motor. Here, one motor failure is taken
into consideration, which is a constant failure at the beginning
and then becomes a time-varying failure. At last, the failed
motor stops completely. The failure is expressed as:Fα fails
for someα ∈ {1, . . . , 16},

Fα

=







2× 105, t ∈ [600, 1000);
2× 105(1 + sin(0.05t− 30)), t ∈ [1000, 1200);
0, t ∈ [1200, 2000].

(67)

Fβ = νβ, β 6= α, β ∈ {1, . . . , 16}.
The initial conditions are chosen asx(0) = [−0.55 0]T , and

the initial parameter estimates are80% of their ideal values.
Case 3 (unparameterizable failure mode). The parame-

terizable failure part is same asFα (67) in case 2, while the
unparameterizable failure term̄δj(t) is chosen as̄δj(t) = 3×
104 sin(0.07t), which is assumed to be the unparameterizable
part and is not considered as the basis signal. It can be
easily obtained the bound of the unparameterizable part of
the failure, i.e.,3 × 104. The initial conditions are chosen as
x(0) = [0 0]T , and the initial parameter estimates are90%
of their ideal values.

Case 4 (unknown disturbance mode). In this case, the
failure is expressed as that in Case 2, and the disturbances are
set as:

d(t)

=















100 sin(0.03t) + 500 sin(0.09t), t ∈ [0, 400);
200(1− e−10t) + 500 sin(0.09t), t ∈ [400, 800);
100 + 500 sin(0.09t), t ∈ [800, 1200);
0, t ∈ [1200, 2000].

The bounds on the disturbances are unknown for the simula-
tion. The initial conditions are chosen asx(0) = [−0.65 0]T ,
and the initial parameter estimates are90% of their ideal
values.

Case 5 (unparameterizable system parameters). In this
case, the disturbanced(t) and failure are expressed as (66)
and (67), respectively. The unparameterizable system param-
eters∆b(t) and∆c(t) are set as:∆b(t) = 0.001 sin(0.02t),
∆c(t) = 0.001 sin(0.02t). The initial conditions are chosen as
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x(0) = [−0.45 0]T , and the initial parameter estimates are
90% of their ideal values.
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Fig. 1: Distance trajectory tracking performance for the
healthy model.

Simulation results. Fig. 1 shows the simulation results of
the healthy system including the desired distance (solid) and
plant distance (dashed). Fig. 2 shows the distance tracking
errors for cases 1-5. From Fig. 2, it can be seen that there
exist some transit responses, which are caused by the changes
of the system parameters or the occurrences of failures. The
simulation results show that the proposed adaptive controller
can achieve the close-loop stability and asymptotic tracking
properties of the train even in the presence of parameters
changes and actuator failures.

IX. CONCLUSIONS

The adaptive failure compensation problem for high-speed
trains with time-varying parameters, disturbances and actuator
failures, is studied. The time-varying indicator functionis
introduced to parameterize the time-varying system parameter-
s. The adaptive failure compensation controllers with design
procedures, both for healthy system, and faulty system with
disturbances, have been developed. Simulation results further
confirm the desired performance of the proposed scheme.
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