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Abstract—In this paper, the adaptive fault compensation prob-
lem is investigated for high-speed trains in the presence dfme-
varying system parameters, disturbances and actuator failires.
To deal with the time-varying system parameters, a new time-
varying indicator function instead of commonly used 0-1 furction,
is proposed to model the train dynamics as a piecewise modeltv
unparameterizable time-varying disturbances, which can over
more time variations and help parametrization for adaptation.
A backstepping adaptive controller is designed for the hedhy
system with unknown piecewise model parameters and known
piecewise bounds on disturbances. For both the parametesble
and unparameterizable failures, the backstepping adaptig fail-
ure compensation with the adaptive laws are derived to achie
the position tracking under the known bound disturbances.
The adaptive failure compensation for unknown bounds on
disturbances is also discussed under the parameterizablaifure.
Through introducing the nonlinear damping in the proposed
controller, the failure compensation controller is proposd for
the model with unparameterizable system parameters to achive
an arbitrary degree of position tracking accuracy. The stablity
of the corresponding closed-loop system and asymptotic d&a
tracking are proved via Lyapunov direct method, and validated
using a high-speed train model.

Index Terms—Failure compensation, actuator failures, adap-
tive control, high-speed train.

I. INTRODUCTION

tolerant control (failure compensation) problem for higeed
trains.

Although in the past years, a considerable amount of
research have been made in fault diagnosis and fault-tdlera
control (see, for example, [4]- [7]), the correspondinguitess
for high-speed trains are very few (see, [8]- [9]). The engpt
results of the fault-tolerant control or the controller ides
show that the model-based methods are popular for the au-
tomatic train operation of high-speed trains. It is welbim
that the dynamic motion model of the train is time-varying
and nonlinear, changing with the train operating condgidro
deal with the characteristics of time-varying and nonliitga
the time-invariant nonlinear model with bounded (Lipszhit
functions of disturbances is considered in [10] and [11].
However, disturbances under different operating conaitio
may not be the same, for example, the disturbances caused
by the tunnel and the wheel-rail skid. It should be noted that
one common bounded function on all disturbances cannot
represent the characteristics of train dynamics well, twhic
motivates us to utilize the piecewise disturbances to model
the train dynamics. Further, considering that the changbeof
parameters of the train dynamic motion model are not abrupt,
a piecewise model with time-varying indicator functionglan
bounded piecewise disturbances are considered in thig,pape
which is more practical and important.

High-speed train with its reliable, fast and high loading Although there exist a lot of methods to obtain the system
capacities, has attracted more and more attention in tletrearameters (see, [12]- [14] ), it is difficult to obtain all
years. With the increasing requirements of the speed aetysathe parameters in the train dynamic model, and the time

of the train operation, a lot of efforts has been devoted
the control design for high-speed trains, see [1]- [3]. &mi
to the other complex systems, high-speed train formed

tind amplitudes of the failures. Moreover, position and dpee
tracking is one of the main tasks for the automatic train
byperation, which is implemented by the designed contralter

the sensors, motors, electrical components, mechaniisa@sdr fault-tolerant controller. The adaptive technique is frsgd to
and so on, will have failures with the long time (distancejolve the unknown parameters problem and to achieve good

operation, which could lead to the delay and even stop
the train. Thus, it is critical to study fault diagnosis aaallf-
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whcking performance (see [15], [16], [17]). To the best of
the authors’ knowledge, the failure compensation problem f
piecewise model involved in the unknown parameters, fadur
and disturbances, has not been fully investigated yet.

This paper is focused on the actuator failure compensation
problem for high-speed trains in the presence of paranzetkri
time-varying parameters, unparameterized disturbareed,
time-varying yet unpredictable actuator failures, sirmn#ous-
ly. The main contribution of this paper can be summarized as
follows:

(i) Considering the time-varying system parameters and
unmodelled disturbances of high-speed trains, a new
time-varying indicator function which can represent
more time variations than that 0-1 indicator function
represents, is proposed to parameterize the time-varying
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system parameters, and piecewise bounds of disturbanc&he model to describe the grade resistance fdge) and
are introduced to describe the unparameterizable disttlre curvature forcé . (¢) is given by (see [19]):

bances. P = M 0 5
(i) For different failure and disturbance cases (inclyggdin y(t)=M(t)gsin0(t), @)
the parameterized and unparameterized actuator fail- Fo(t) =0.004D(t) M (t), ®3)

ures with unknown failure time and un!(nown system hered(t) is the slope angle of the current tradR(¢) is the
parameters, the unknown bounds of disturbance), t Sgree of curvature

:ggpg\ézgz'\llirela(\j\?smgf:S;é'\z;Ocsgér?gefcmgce‘c’tgécsti%renRemark 1: There exist several models to express the curva-
tracking ke forceFC(t), see [18]. Although the formulge are different,
' . the expressions of the curvature force are in the completely
(iif) For the unparameterizable system parameters, the ngn : f ith the parameters related to the train
linear damping is introduced into the adaptive fa”urgarametenzed orm with P
. ller to achieve an arbitrary de r(\é\/eheelsets and curve radius. He_re, we use the c_urvature force
g??gf;igtlggcﬁfgct;o Y 0e9"'&odel from [19] to study the failure compensation problem.
' The proposed method can be employed to the other formulae
The rest of this paper is organized as follows: In Sectigsf the curvature force. O
I, the piecewise model with time-varying indicator furaris Further, substituting expressions (2)-(3) into equatidh (
and piecewise disturbances of high-speed trains is briefly|ds
introduced, and the actuator failure compensation issue is
formulated. In Section IlI, an adaptive controller is desig M (1)@(t) = F(t) — (ar(t) + br(£)2(t) + ¢ (1)3(t))
for the healthy system with known disturbance bounds. In —M(t)gsinO(t) — 0.004D(t) M (t) + d(t). (4)
Sections IV and V, the failure compensation controllers for ] ] ]
parameterized and unparameterized failures, are dewblogs the displacement and velocity of a train can be measured
respectively. In Section VI, under time-varying faulty eon©nline by the speed sensors and track circuits, the chamge i
dition, an adaptive compensation controller is presented fnstants of these parameters can be obtained on-line.
the unknown disturbance bounds. In Section VI, an adaptiveC0efficients analysis The mass is static when a train
compensation controller with nonlinear damping is propos@Perated on line, which implies that the variable masg)
for the unparameterizable system parameters. In Sectitin VFan be modeled as a piecewise constant function depending
several simulation results for various operation condiiare ©n the displacement of the train. _ _
presented to verify the effectiveness of the presentedréail According to the modelling methods in [18], it can be
compensation controllers. Finally, conclusions are giwen concluded that changes of coefficients b, and ¢, in (1)
Section IX. mainly depend on the current operation condition of the

train (including mass, speed, tunnel passing, etc.). These
coefficientsa,, b,, ¢., 8(t) and D(t) can be considered as
Il. PROBLEM FORMULATION constants in usual, when the whole train is running under a

Considered the unmodelled uncertainties and the chan§g&@in operation condition.
of the model parameters induced by the change of trackHowever, there are also some cases that parameters are
conditions (e.g., slope, curve, tunnel, etc.), the piesewivarying even under some certain operation conditions. For

model with time-varying indicator functions and piecewiséxample, due to the train length, the grade resistance fuifce
disturbances is constructed in this section. increases to a maximum value from zero and decreases to zero,

when the train is climbing a slope. The value of parameter
¢-(t) under the case that train just enters the tunnel, is differen

A. Longitudinal Motion Dynamic Model from that when the whole train is running in the tunnel, if
The general dynamical model of longitudinal motion of th1€ tunnel is long enough. For these rare typical situafians
high-speed train is described as [18] piecewise con;tant with a known pme-varymg function cen b
introduced to improve the modelling accuracy.
M(t)i(t) = F(t) — ar(t) — bp(t)v(t) — ()03 (t) Disturbance analysis The disturbancé(t) represents the
—F,(t) — F.(t) +d(t), (1) unmodelled factors caused by changes of train operation

conditions, such as rail, wheel, weather, etc. When the tsai
wherez(t) is the displacement of the traid/ (¢) is the mass running under a certain operation condition, an upper bound
of the train,F'(¢) is the traction forceq, (t) defines the train’s can be used for the disturbance. With changes of the train
rolling resistance componert, (¢) defines the train’s linear operation condition, another upper bound should replaee th
resistanceg,. (t) defines the train’s nonlinear resistanegt) former one.
is the speed of the trairF,(¢) is the force caused by motion Using the existing modelling methods, the upper bound of
on the grade/F,(t) is the force caused by motion on thehe disturbanceé(t) can be obtained. When the train operates
curve,d(t) is the unmodelled factor, and can be the wheel-rain the horizontal line without slope or curvature under ralrm
adhesion from rail or the nonlinear environmental distades environment, the upper bound of the disturbance té(n),
from weather conditions. The traction foré&t) is generated can be chosen as zero or a small positive scalar. When there
by the traction system in the train. is strong wind, the disturbance tertdtt) should be changed



with the wind. According to the wind strength that the traim constant 1 or a time-varying function. Wh#n;(¢) is chosen

can tolerate, the upper bound dft) related to the strong as the constant 1, the indicator functigp;(¢) is the common
wind can be estimated from the experiment data. The wheabed 0-1 function, which would represent a piecewise cahsta
rail adhesion is formulated as a nonlinear function withetim model, as often used in the literature. Whep;(¢) is a time-
varying parameters, which is dependent on the wheel skidrying function, it could represent in ramp or exponential
condition. The regions of the time-varying parameters cdanction form, which should increase from 0 to 1 and keep
be obtained from the existing results about the wheel-rai 1, or decrease from 1 to 0 and keep in 0. Considering that
adhesion (see [20]). Thus, the upper bound(@j contributed the train mass can only change at the stations, the indicator
to the wheel-rail adhesion can be calculated. function x,,,;(t) must be a 0-1 function.

On the other hand, the train runs based on the operatiorDuring train operation, the region for all possible
timetable, and always moves on the same track at a given tisystem states(z(t),4(¢)) is denoted by and its [
interval and spatial interval, which makes the operati@iifee  subregions are denoted Wy;, : = 1,...,l. Further, when
of train dynamic model in repeatable pattern [21], [22]. &h&s (z(t),2(t)) € Qs (m(t),a(t),b(t), c(t),9(t), D(t),d(t)) =
on the historical operating data, the bounds of the dist®s. (7 Xmi(t), @iXai(t), bixpi (t), cixei(t), Fixoi(t), Dixpi(t),
can be estimated. di(t)xg (), i=1,...,1, wherem;, a;, b;, c;, ¥;, andD; are

From now on, it is concluded that the upper bound afnknown constantgd;(t)| < d? andd} is known constants.
the disturbance terri(t) can be modelled as piecewise wittBecausez(t) and i(t) are available in real-time, the time
known values. Due to the available information of the traimstants thatx(¢), @(¢)) jumps from one regiof; to another
(speed, weather, rail, ect.,), the change time instanthef €2;(i # j), are known. So, the functiong,;(t) defined in (6)
train operation condition is available in real time. Simija are known.
the change time of disturbance bound can be obtained in realt is assumed thatz(¢), <(¢)) only belongs to one region.
time as well. Let 21 = x andxzy; = . The longitudinal motion dynamics

(4) can be described by:

Remark 2: Although common known bound can be em-

ployed to the disturbance, the piecewise model for distur-  #1(t) =22(t), @)
bances is more accurate. Here, the piecewise constants are o (t)=m(t)F(t) — a(t) — b(t)za(t) — c(t)z3(t)
assumed known, which can be obtained from the physical —gd(t) — 0.004D(t) + d(t), (8)

experiments or practical measure. In the case when the
piecewise constants are unknown, modified adaptive laws cahere
be proposed, which will be considered later in this paper.

l l
Moreover, there are other types of disturbances, such &s tha m(t) :Z”LiXmi(t>; a(t) = ZaiXai(t>a (9)
discussed in [23] and [24], which could be considered in the =1 i1
future work. O

l l
b(t) = bixwi(t), (t) = cixeilt),
B. Piecewise Dynamic Model "il iZIl
From the above analysis, it concludes that the parameters V(1) :Zﬁix,l%(ﬁ), D(t) = ZDiXDi(t)v
M(t), ar(t), br(t), cr(t), 6(t), D(t) and the bound orl(t) i=1 i=1
are unknown piecewise constants or time-dependent furgtio

l
and are dependent on the velocitand positionz of the train. d(t)= Z di(t)xg(t), (10)
1 a,,A(ﬁ) bl,A(t) i=1
Let m(t) = ——, a(t) =

, , = , c(t) =
e (t) M(#) B M(1) d(i)) M(t) " with m;, a;, b, ¢, ¥;, and D; being unknown constants;
"L 9(t) = sinf(t), andd(t) = ——. Equation (4) can |d;(t)| < d? with d) being known constants, and,;(¢) being
lcj)\g(fgwritten as M(t) the indicator functions defined in (6). Because boundg(@h
is known, and the masses of the empty and full train are also
E(t)=m(t)F(t) — (a(t) + b(t)E(t) + c(t)i*(t)) known, the bounds of the terr{t) = d(t)/M (t) is available.

—gi(t) — 0.004D(t) + d(t), (5)

Remark 3: Here, the known time-varying functions,; (¢)
wherem(t), a(t), b(t), c(t), ¥(t), D(t) and the bound od(t) are introduced to improve the modelling accuracy, althdgh
are unknown piecewise constants or time-dependent furectio0-1 indicator function can represent the most situatioheré

To describe the parameters in equation (5) via a formate only some typical situations, for which we choose some
mathematical expression, the indicator functiops(t) are more accurate indicator functions. Thanks to the repeadéal t

introduced as: operating pattern, the functios,; (¢) can be obtained through
U,i(t), if (z(t),i(t)) € Qi training the historical data or analyzing the train moti@m
Xei(t) Z{ o otherwiée b (6) the other hand, if the time-varying functiofis,(t) cannot be

B obtained, the model with unparameterizable system pasmet
where ¢ € {m,a,b,c,¥,D,d}, ¥,(t) is a known time- is used to describe the high-speed train, whose controller
depending function satisfying,;(¢) € (0,1]. ¥,;(¢) could be designed will be presented later in this paper. O



C. Actuator Failure Model actuators fail, the remaining healthy actuators can sthieve

The actuator failures in traction system are always geeerafh® desired control objective. This assumption means tiat a
by the failed equipments, which are modelled as constaft®f then actuators may fail, and the parametgronly takes
or time-dependent functions. Generally, two types of mede?n€ integer in the intervalh — 7, 7] to reflect the different
are usually used to describe the failure, i.e., parametiit afailures. _ . _ .
nonparametric expressions. In this subsection, theseypest ~ Unparameterized failure model Consider the incomplete-
of failure models will be introduced, and the adaptive failu !y Parameterized failures. The mathematical model is gbyen
compensation controller design for each type of failure eted

will be proposed. Fj(t)=F;(t) = Fjo + ) Fjpfip(t) +5;(1), t>1t;(16)
Parameterized failure model Considem motors in a high- p=1

speed train. The completely parametric failure model can be o ) _ _ )
expressed as (see, e.g. [17]) where Fjo, Fj, and f;,(t) are defined in (11), and;(t) is
an unknown and unparameterizable but bounded term. In this

_ _ A case, the input of system (7)-(8) can be rewritten as
Fj(t)=F;(t) = Fjo + Y Fjpfip(t), (11) P
p=1 n—=ky B
t>t;, je{1,2,...,n}, F(t)=kovo(t) + Tw(t) + Y 6;(t), 17)
j=1

wherej is the failure index¢; is the failure occurring time . ) .

instant, 7, and Fj,, are unknown constants. The basis signalén€réo(t) is a designed control signat,, £ andw(t) are
£;,() are known, withs; being the number of the basis signal§efined in (13)-(15). . o

of the jth actuator failure. For the unparameterized failure case, it is assumed that

This failure model (11) covers several practical failuréSsumption (A1) holds for failure compensation design. The
conditions of the high-speed train actuators, which is shoWe™d;(t) is introduced to describe the nonparametric part of
as follows: thejailure, which can be changed to describe differentifas.

1) Total failure. The motor stopping failure is a total fagu AS 9;(t) = 0, (16) is equivalent to the parametric failure (11).
Then, (11) can be written aB;(t) = F;(t) = Fjo = 0, with o o . _
F,=0forp=1,...,s;. Objective. The objective of this paper is to develop an

2) Constant failure. The mechanical drives locked failurddaptive failure compensation controlley(¢) for the above

can lead to the constant torque, which results in a const&pdeled high-speed trains (7)-(8) with unknown system pa-
actuator failure. Then, (11) can be writtenBgt) = F}(t) = rameters, unparameterizabel disturbances, and unknown ac

Fjo = non-zero constant, witl;, = 0, for p =1,....s; ator failures to guarantee the system stability and asytiepto

Jr . .
3) Periodic form failure. The IGBT (Insulated Gate Bipolaf"@cking properties.
Transistor) failure (from PWM) can lead to the periodicdiad
with approximate known frequency, which could be a singll. A bAPTIVE CONTROLLER FORHEALTHY ACTUATORS

function. Then, (11) can be written a;(t) = F;(t) = In this section, a backsteeping adaptive controller will be

F;; sin(wt) for some knownw, with Fiy = 0, F;; = X X .
néﬁlzt(r% l),mknown constant aﬁ?} 0 féor 5 Jls} designed for the healthy trains to guarantee the stabilitje®
p =B P85 closed-loop system and the statg(t) to track the Distance-

Since there aren motors in the high-speed train, th : o
resultant traction forceF'(¢t) is the sum of the forced), “To-Go (DTG) curver(t). The design procedure is given as

o i . . follows:
j=1,...,n, generated from thgth motor, given by: Step T Denote the tracking error as
F(t)=>_ Fj(t). (12) 2(t) =21(t) — 2m(t), (18)
j=1
From (11) and (12), the input of system (7)-(8) can b%nd introduce
rewritten as 29(t) = xa(t) — ay(t), (19)
F(t)=kyvo(t) + £ w(t), (13)  wherea; (t) is to be designed later. Then, from (7), it has
5:[5?7531)"')5’?;]717 . t o t . [‘,
&=[Fo. Fj,....F,)T € RO+, (14) Al =it —dnlt)
— 2(t) + an(t) — dm(t). (20)

w(t) = [1, fll(t>; ey f151 (t), ey ]., fjl(t)a ey fjsj (t), ey
L fai(t), ..oy fus, (O], for j=1,...,n, (15) Choosing the design functiom () as

wherevy(t) is a designed control signal, afgd is the actuator ag(t)=—r121(t) + &m(t), 1 >0 (22)

failure pattern parameter withandc(¢) describing actuators o ) ) N o )

and the types of failures. and considering the first partial positive definite function
For adaptive actuator failure compensation design, an as- 1

sumption is given as: (A1) for the case that any upto < n) Vi= izf- (22)



From (20) and (21), the time derivative &t is given by:

Vi=z1(t)4(t)
=21(t) (22(t) = r121(t) + Zm (t) — B (1))

=—r22(t) + 21(t) 22 (t). (23)
Step 2 From (19) and (8), it follows that
2a(t) = da(t) — cu (1)
_zlj (P (@) = ani(®) = boxs(tia (0
Ce (30 — gdit) — 0.004D (1)
+di(t)x,-(t)) — (). (24)

Now, (20) and (24) can be viewed to be stabilized dy(t)
given in (21) with respect to the Lyapunov function

l
1, 1
VQV1+§ZQ+Z;§<
1=

+0,102 + TiD? +

172 | p—1:2
+I‘bt by +T'., ¢

m; ~2
Fmi pz)a

(25)

C.A_lz' (t) =—Taiz2(t)xai(t), (27)
bi(t) = —Tpiza(t) xpi (t) 72 (t), (28)
é’i (t) =—T¢i20 (t)Xci (t)ac% (t ) (29)
9i(t) ==Toiza(t)xoi (g, (30)
Di(t) =—0.004T p;za(t) x pi (t) (31)
Then the time derivative of; can be expressed as
l
o= =) + 220 (1(0) + L lmo(OF()
1=1
l
—Gi(t)xi(t) + Czi(t)Xi(t))) + lini_ﬁi(t)ﬁi(t)

i=1
wheren(t) and(;(t) are given as
N(t) =21(t) = 2m(t) +11(21(t) — dm(t)) — Tm(t), (32)
Gi(t) = aixai(t) + bixwi(t)za(t) + Eixei(t)25(t)
+g0ix9i(t) + 0.004Dix ps (t). (33)

Considering that the indicator function,;(t) can only be 0-1

whereT'ai, Uvi, I'ei, I'vi, I'p; @andl'y,; are positive constants, fynction, the expression df, can be rewritten as

at—at—al() b; = b; b() cl—cl—cl() Vi = ; 19()

D; = D; — D;(t), with a;(t), bi(t), &(t), 95(t), D;(t) being

the estimates ofi;, b;, c,, ¥, and D;. p; = p; — pi(t), pi(t)

is the estimate op; = I

to estimate these parameters will be provided later.
Using (8), the time derivative of; is

l
Vo=—1127 () + 21(t)22(t) + z222(t) + Z Loitai(t)aq(t)
0B (0)bi(t) + TS E () () + T
0+ i)
=—r12{(t) + 22() (1 () — (1))

l
+2o(t) Z maxs(£)F(t) — asxi(t) — bixa(t)zo(t)

(
+F_,1-Di(t)5i

—cixa(t)23(t) — gdixa(t) — 0.004D;x:(t) + di(t)xs (t))

+22(8)(r1 (21 () = & (1)) = Em (1))
_zlj (Fatao) (i) + Turza(Os(0)
T, b (t) ( i(t) + Toiza(t)xi(t )332(75))
IO CIORR WENCMIGE D)
FT510:() (9:(0) + Torza(t)xa(t)o)
DD (1) <b2( ) + 0.004T 2 (£) i (¢ ))

(26)

. The associate adaptive laws used

"/2 = 77“121 + Z2 Z szmz ( poZ( )
l
o (0 1) + pm(t)> FY )0
i=1 ma
= —7“121 + 22 Z mtsz ( — Pi Cz( )

+pidi () xg:(t) + pin(t) + pi(t)razo (t))

l

e () + 2 g 00, (34)
wherery > 0. -
The controllerF(¢) is chosen as
me )(vatreato) + 5060
A0 ~ 5 (Oraa?)). (35)

whererg; (t) is designed to compensate the unmodeled distur-

banced;(t) for stability and trackingp;(¢) is updated from
the adaptive law as follows:

i) =~ 3gelsrtza(t)]. (36)
pilt) = ~Trsza()(G(0) = 1(t) = raza(t)ms (1), B7)

with p2 being a known lower bound om;: m; > p% , and
A\Y being a design parameter such thdt> ..



Using the controller (35), with (36) and (37}, can be  Step 2 From zy(t) = z2(t) — a1 (t), (8) and (13),
rewritten by
l

Vo= -naf) = rasd0) + 3 = SENlealOlalt) 2(0)= 2 moxmi ) (koo(®) + 1) - aixail)
=\ rn =1
- - —bixpi ()2 (t) — cixei(t)3 (t) — gdixoi(t)
+22(t)d; (£) X 4s (t)) —0.004D;xpi(t) + di(t)x g (1)) — ca(t).  (39)
< —r122(t) — ro2a(t). (38)

i For fault compensation problem, the dynamics:oft) and

Stability analysis. SinceVs < —r127(t) —r2235(t) <0, all 2, (¢) can be viewed to be stabilized hy; (¢) given in (21)
the variables: (t) = 1 (t) — o (t), 22(t) = 22(t) — a1(t), with respect to the following candidate Lyapunov function
€—E&(t), ai—ai(t), bi—bi(t), ci—¢i(t), Vi —D;(t), Di— Di(t),
pi — pi(t), are bounded, and so are(t), £(t), ai(t), bi(t), . . !
&i(t), U5(t), Di(t), and p;(t). From (21),a,(t) is bounded, Vo=Vi+ 32 +Z i 2 Zﬁ JlETE
S0 isx2(t). Then, from (35), the boundedness of the control = 2
F(t) is ensured. Thus, all signals in the closed-loop system

l
1 - .
are bounded. +> 3 (F;}&f + 102 + T 4 Ty 2
SinceV; is bounded,[;” 23(7)dr < oo and [ z3(7)dr < i=1
oco. According to (20), zl( ) is bounded. It shows that “1/2 , Mi o
lim; ,o 21(t) = 0, which implies thatlim; . (x1(t) — D+ Fmipi ’ (40)
Tm(t)) = 0.

It should be note that the control signal in (36) is nolvhereV; is defined in (22)['x., Le, Daiy Ty Tei, Fm, T'p;
continuous. Thu$% is negative with discontinuous right-hand-and I'yyi are positive constants, = & — 5( ), @i = a; —
side. In this case, the system solution is defined in thegehp ai(t), b, = b; b-( )y G o= ¢ — ¢i(t), 9 = 0, — (1),

sense [25], [26]. D; = D; — Di(t), with g(t), ai(t), bi(t), &(t), Vs(t), Dy(t)
Now, we obtain the following adaptive controller desigmeing the estimates df, a;, b;, c;, ¥, D;, respectively, and
method: [)ky = Pkv — ﬁky(t), ﬁz = p; — ﬁz(t), with ﬁky(t) and ﬁz(t)

Theorem 1 The adaptive controller (35), with the adaptivéeing the estimate gf;, = ki andp; = ——, respectively.

scheme (27)-(31) and (36)-(37) applied to the system (¥)-(8 |t should be noted that there are two types (sets) of time
guarantees that all the closed-loop signals are boundethandintervals: one set of known time intervals during which the
tracking errore(t) = x1(t) — 2y, (t) satisfiedim;, e(t) = 0. system parameters are constant and unknown, and one set
of unknown time intervals during which the actuator failure
From (21), &(t) is bounded, due to the bounded(f) parameters are constant and unknown (as the failure pattern
and @, (t). According to (24),%(t) is bounded. It shows js fixed). To deal with the first type of known time intervals,
that lim; ., 22(t) = 0. Further, with bounded>(¢) and e have introduced the indicator functiogs;(t) to expand
Em(t), it follows that limy e 22(t) — @m(t) = 0, which the system parametrization to include all possible piesewi
implies that thez,(t) can tracki, (¢). For high-speed train, values of system parameters, that is, the parametets, c;,
@ (t) represents the desired speed of the train. Therefofe, p; and-L (related withy;) are constant for all such time
the adaptive controller (35) can achieve both the distande gntervals. To deal with the second type of unknown time inter
speed tracking, simultaneously. To design the trackingesur yals, let such time intervals be,, Tpi1), p = 0,1,..., M,
itis necessary to consider the constraint for distance peéd that is, fort ¢ (T, Tp+1), the actuator failure pattern is fixed
of the train under the different operating conditions. and the parameters in (13) are constant, which implies Hieat t
parameterg andkv in (40) are constant. It should be noted
that p, = —— changes with the indicator functiog,,;(t)
and the failure pattern. Lef7,}°2, denote the known time
instants at which (7)-(8) switches between different modes
In this section, a failure compensation controller will b&vithout loss of generality, we assume tH&t € (7}, T,+1)
designed to guarantee the closed-loop system to be statble and 7},,; > 7},+1. Then, the positive definite functioW, is
the stater (¢) to track the desired curve,, (t) in the presence continuous and differentiable on the time intervely, T,)
of actuator failures. The parameters of the train dynamideho  The adaptive laws foti;(t), b;(t), &(t), 9:(t), and D; ( )
are unknown constants with known bounds on disturbance, Byt chosen the same as that of health case (27){3@)15
uncertain actuator failures may occur. The design procaadlypdated by
is described as follows:
Step 1 This step is the same as that for healthy case in .
Section II. The tracking errok, (¢) and the parameter, (t) £(t) =Tez2(t)m(t), (41)
are defined in (18) and (19), respectively. The first partial
positive definite functiord; is chosen as (22). Then, From equations (21), (23) and (39), the time derieativ

IV. ADAPTIVE ACTUATOR FAILURE COMPENSATION
CONTROLLER



of V4 is V4 (+) as a function of is not continuous. With the estimation
errors z;(t), z2(t) and the adaptive laws in (27)-(31), (37),

Vz:—mzl t) + za(t Zm EyXmi(t ( vo(t) +pkuéT(t)w(t) (41) and (44), the time derivative dfy for ¢t € (7,,T),),
p=20,1,..., M, becomes

—piGi(t) + pidi(t)x i (t) + pin(t) + pirazs (ﬂ) Vo <—maf(t) = ra23(t). (46)

Since there are only a finite number of failures in the system,
Crp22(t) + Z )i (t) + Z 5 (0 p Va(Ty;) is finite, and from
‘./2 § 77‘12’%( ) — 229 (t) 0, (47)
wherery > 0, n(t) and(;(t) are given as (32) and (33).

The control signaly(t) is designed as it follows that all the Va”ab|6521() = 21(t) — zm (1),

2(t) = ECQ)( )—ax(t), (é £(t), a ((t) bi —bi(t), ¢ ( ():i(t),

. 0; — i(t), Di — D; )pky—pku t), and pL—thAare

vo(t) = —huw (£) )+ me <”d% bounded, and so arei(t), £(t), ai(t), bi(t), &(t), Vi(t),

Di(t), pro(t) and p;(t). From (21),c () is bounded, so is
+pi(t)Ci(t) — pa(t)n(t) — ﬁi(t)T'QZQ(t)), (42) x2(t). Then, with the failure compensation controller (42), the
boundedness afy(t) is ensured. Thus, all signal in the closed-
wherep;(t) is given as (37)yq;(t) is designed to compensatdoop system are bounded. Further, (47) implieg) € L, and
unmodeled disturbanag (¢) to guarantee the system stabilityso lim; .. 21 (t) = 0.
and tracking performance, angl, (¢) is updated from the It should be noted that the control signal in (43) is not

adaptive law continuous, thei, is negative with discontinuous right-hand-
side. The system solution is defined in the Filippov sensg [25
vai(t) = ——A)sgrizs (t)], (43) [26]. The performance of the adaptive controller to obthia t
) p . stability and tracking can be summarized as follows:
P (t) = T 22(D)ET (8w (1), (44)  Theorem 2 The adaptive failure compensation controller
with 00 being a known lower bound om;: m:k, > o9, and (42), with the adaptive scheme (27)-(31), (37), (41) and (44
A0 being a design parameter such thdt> d?. applied to the system (7)-(8) with actuator failures (1B3)(

The controller (42), with the signaly, (¢) defined in (43) guargntees that all the closed-loop s_igl_"nalg are boundethand
and the adaptive control laws in (37) and (44), leads to ~ racking errore(t) = . ()~ (t) satisfiesim o e(t) = 0.

Vo=—r127(t) — raz3 (1 +Z(

Similar to the convergence discussion in Section I, we
i122(0IXai(t)  havelimy_, oo (22(t)—im () = 0. The designed adaptive com-
pensation controller (42) can achieve the distance anddspee

+29(8)d; () x g (¢ )) tracking, simultaneously. The proposed adaptive compiemsa
' controller is designed effectively for the complete param-
< —r123(t) — roza(t). (45) eterized high-speed train faulty model with known bounds

of disturbance. For the following sections, the more gdnera
Rodel with the different mathematical formulations of the
unparameterizable parameters will be discussed.

It should be noted that the values of piecewise constant
rameters, also with the amplitudes of failure parameteusdco
change, during the system operation. We deri@ig 7},+1),
p=0,1,..., M, with T, = 0, be time intervals, when the
actuator failure pattern is fixed, which means that the actaa
only fail at time 7, for p = 0,1,..., M. Under Assumption
(A1), Ty = 00. Meanwh|le Iet{T} °, denote the known Recall the incompletely parameterized failure model (16)
time instants at which (7)-(8) SW|tches between differednd (17) in Section Il. In this section, the more generalaiciu
modes. That is, the unknown parametgrs and ¢ related to failure problem will be considered.

V. DESIGN FORUNPARAMETERIZABLE ACTUATOR
FAILURES

the failure parameters, and¢, change their values, at tin1g,, The design procedure is similar as that of the parameteriz-
p=0,1,..., M, while the unknown system parametefsb;, able case in Section IV. Due to the unparameterizable artuat
¢;, ¥;, and D; change their values, at tinig,, ¢ = 1,...,00, failures, the controller,(t) is designed as
andp; (related withm; andk,) changes its value, at tirmig, _—
and7,, forg=1,...,00 andp =0,1,..., M. () = —p ) + Ve (1) + (V

Stability analysis. For the functionVs in (40), the term o) = ~Pi(t ; o z::X"“ ailt

containing gy, andé about the failures is different from the

term in (25) (last term, containing:, b;, &, 9;, D; and +pi(t)Ci(t) — pi(t)n(t) ﬁi(t)rgzg(t)), (48)
p;) about the model parameters, because the switches of the

fallures are achieved via the tracking error based adafstive wherev;;(t) andv,;(t) are designed to compensate unknown

instead of the indicator functiong,(t) in (6). Due to the 4;(¢) andd,(t) for stability and trackingy(t) and (;(t) are

piecewise constant parametefs, &, a;, b, ¢;, ¥;, D; andp;, defined in (32) and (33) with the estimat@g), b;(t), &(t),



D4 (1), [),-(t) being updated by the adaptive laws in (27)-(31); VI. DESIGN WITH UNKNOWN DISTURBANCE BOUNDS
pi(t), £(t) andpy, (t) are given by the adaptive laws (37), (41) The disturbances considered in the previous sections, are

and (44). _ bounded with known bounds. If the disturbance bounds are
The design signals,;(t) andvy;(t) are designed: unknown, some methods should be taken to estimate the
1 bounds. In this section, we will propose a failure compen-
Vs (t) = ——5—055grza (1)), (49) sation controller for the case that the disturbance boungls a
/’1ku unknown.
vai(t) = 7?)\%9@2@]7 (50) The some_desugn_steps are same as that for theT parameter-
P; izable case in Section Ill. Due to the unknown disturbance

bounds, Lyapunov functio#; should be changed and chosen
wherep, and p{ are known lower bounds ok, andmk,,

respectivelyk, > pf),, mik, > p?, andé9 > 16;(1)], A is a . .

design parameter such that > d9. Vo=Vi + 1s " Z }ﬂﬁz + Z Mipo1grg
Using the Lyapunov function (40), the above adaptive 27 ~ 20k v — 2 ¢

control scheme leads to

1 —1~2 —172 —1~2 —132
+Z 5 (Fai ai + Ty b; + e 65 + Ty 05

I n—k,
Vo= —r122(t) — raza(t) + (m,-zQ(t) () Xmi () =t .
=L =1 5D + T () + ﬂﬁ?) , (53)
_ mik, o i Lo
22 ()di () x i (t) — P 0j |22 (t) xmi (1) whereV; is defined in (22)Ciu. Te, Taiy Tois Teis Doy T,
miky T ar]d ng are E)ositive constants, = ¢ - é(t), a; = a; —
3 )\i|22(t)|Xdi(t)) ai(t), by = b = bi(t), & = e — &(t), Dy = 9 — D(t),

D = Di—D;(t), \) = )= A0(t) with £(t), ai(t), b(t), &:(t),

Vi(t), Di(t), N)(t) being the estimates &f a;, b;, c;, ¥, D;,

Stability analysis. Due to the finite number of failures in thear_‘d)‘g’ respectively, an@y, = prw — pru(t), pi = pi _lﬁi(t)’

system,Va(Ty;) is finite. From with g, (t) and p;(t) being the estimate ofy, = I and

pi = ﬁ respectively.\? is an unknown parameter such
Vo =—r122(t) — rp22(t) <0, (52) that\? > dj. . . .

_ The adaptive laws foti;(t), bi(t), ¢i(t), vi(t), D;(t) and
the variables: (t) = x1(t) — zm(t), 22(t) = z2(t) — ax(t), &(t) are given as (27)-(31) and (41))(t) is updated by
§—€(t), a,-—&,-(t), bi—bi(t), Ci—éi(t), 191‘—191‘(75), Di—DZ;(t), ;0
P = Pro(t), pi = pi(1), are bounded, and so are(t), £(1) A (1) = —Tapza(t)sgriza(t)xai(0) c4)
ai(t), bi(t), ¢;(t), 9;(t), Di(t), pr,(t) and p;(t). Then, with The controlleryy(t) is designed as
the structure of the failure compensation controller (4Bg .
boundedness afy(t) is ensured. Further, (52) implies(t) € Vo (1) = — pry (DE) o () + it (V (1
Ly and solim;_, 21(t) = 0. The system solution is defined o(®) Pra(DE (B (1) ;X () { vait)
in the Filippov sense [25], [26]. R R R

For the unparameterizable actuator failures, we have the +pi(t)Gi(t) — pi(t)n(t) — pi(t)7“222(t))a (55)
following conclusion: ' : .
Theorem 3 The adaptive failure compensation controIIeWheren(t) and (;(¢) are defined in (32) and (33) with the

: : i ) ~estimatesi; (), b;(t), ¢i(t), ¥i(t), Di(t) being updated by the
(48), with the signals (32)-(33) and (49)-(50), and adamvedaptive laws in (27)-(31Y3i(t), £() and py (£) are given by

scheme (27)-(31), (37), (41), and (44) applied to the sys- . .
. : e adaptive laws (37), (41) and (44);(t) are designed to
tem (7)-(8) under actuator failures (16), guarantees that 5 pensate unmodeled disturbansét) as

the closed-loop signals are bounded and the tracking erfgM
e(t) =1 (t) — T (t) Satisfieslimtﬁoo e(t) =0. Vi (t) _ 7%5\?@)39[{2’2 (t)]XJi (t), (56)
m

Similar to the convergence discussion in Section IlI, W&here? is a known lower bound om;k,: m:k, > p?, and
have thatim;_,. (z2(t) — &, (t)) = 0. For the unparameteriz- A0(t) is updated by the adaptive law (54).
able failure case considered here, there are two type p&ame The apove adaptive control scheme leads to
variations caused by either actuator failure or system mode ) )
changes, also the disturbance and unparameterizableefailu‘/é:—7“121 (t) — r225(t)
term. The proposed controller (48) is parameterized, sb tha ! mi <o ‘0
both parameter variations and unparameterizable terms can T ( - pT)‘i ()]z2(t)[xas(t) + Ag (£)|22(t) [ xai(t)
be dealt with. To handle the unparameterizable terms from =1 "
disturbances and failures, the signals(t) andvg; () in (49) — |22 ()| A% () + 22(t)di(t)Xdi(t))
and (50), are employed to guarantee the tracking perforenanc
via the use of a piecewise Lyapunov functith < —r22(t) — re22(t) < 0. (57)

< =122 (t) — a2 (t). (51)



Stability analysis. Similar to the stability analysis in Sec-v,(t) is designed as
tion V, it is concluded that(t) = z1(t) — zm(t), 22(t) =

< / ) X l
30 o it ot 0= DET )+ S 6 (0 + s 0

bounded, and so arg (t), {(t), a;(t), bi(¢), ¢ (¢), 94:(t), D;(t),

MO(t), pry(t) and j;(t). Then, with the failure compensation +pi(t)Gi(t) — pi(t)n(t) — P}(ﬁ)7“222(t)>7 (60)

controller (48), the boundedness mf(t) is ensured. Further,

(52) impliesz (t) € Lo and solim;_, ., 21 (t) = 0. wherewva (t) is designed to compensate unknowa(¢) and
For the unknown disturbance bound case, the followingc(t) for stability; n(¢) and ¢;(t) are defined in (32) and

conclusion can be obtained: (33) with the estimates; (t), b;(t), ¢i(t), ¥i(t), Di(t) being

Theorem 4 The adaptive failure compensation controllePdated by the adaptive laws in (27)-(34)t) and py., (t) are
(55), with signal (56) and the adaptive scheme (27)-(31),(3 9\vén by the adaptive laws (41) and (44);() is given as
(41), (44), and(54) applied to the system (7)-(8) with atiua (43)- 7i(t) is updated from the adaptive law

failures (13)-(15), guarantees that all closed-loop diyeae 5 (1) = —y oo (E)(—wa (£) + Ci(£) — n(t
bounded and the tracking erreft) = x,(t) — z,,(t) satisfies pilt) = —ymiz2 () (=va(t) +G(t) = n(t)
limy a0 e(t) =0. —Traz2 (t))Xmi (t) (61)

The design signalsa (t) is given by
The failure compensation controller designed in this secti
is for the case when the bounds on disturbances are unknown. VA (t) = —k122(t) 25 (t) — kaza(t)25(t), (62)
To deal with the unknown bounds, the adaptive law (54) is Ut\}\?ith k>0 andk, > 0
lized to estimate the unknown designed paramafefshown U . the L 2 ov function (40). the above adaptiv
in (36) or (43) or (50)), which is designed for the known sing the Lyapunov function (40), the above adaptive

bound case. The proposed method can be easily extenagatrOI scheme leads to

to the unparameterizable failure case, through an addition . ) ) ! mik,
adaptive law to estimate the unknown designed paramgter V2="7121 (t) = raz3(t) + § , TR Ailz2(t)[xai(t)
i=1 ¢

To prevent possible parameter drift in the adaptive law &)

other adaptive laws in the presence of possible systemsioise ., (4)d; () (t)) + va(t) — Ab(t)23(t)w(t)

and additional disturbances, robust adaptation techgigue

[27] can be employed. —Ac(t)z3(t)x3(t). (63)

Stability analysis. Takingva (t), we obtain

VIl. FAILURE COMPENSATION CONTROLLER FOR . 2 2 2.2
UNPARAMETERIZABLE SYSTEM PARAMETERS Vas—mzi(t) = razp(t) + ( ~hzm (5 ()
In the above sections, the system parameters of the high- +bolz2(1)||z2(1)] — kaz3 ()25 (t) + col2a (b3 (t))'
speed train dynamic model are completely parameterized,
and the bounded disturbance is used to express the urfaihich by andc, are (unknown) upper bounds gab(t)|
rameterizable uncertain time variations. In this sectime, and[Ac(t)]. The term
show that even when there are unparameterizable _system k1 22(8)22(8) + bolza(t)|| 22 (8)] — kaz2(t)ad(t)
parameters with unknown upper bounds, we can design the 5
failure compensation controller to ensure boundedneskeof t +eolz2(f)|23(t) (64)
tracking errors of the closed-loop system.
The longitudinal motion dynamics (4) with unparameteri
able system parameters can be expressed as:

. . b2 c2? ke
a_lttalns a Ln;xmum valuep- + ;&) at |z2(t)| = 3432 and
Z‘ZQ(t)| = %% Therefore,

Qkf(}()
y 2 2 b(2) 0(2)
2 (1), (58) Vo <—ry27(t) — rozs(t) + (4_k1 + 4_1@) (65)
m(t)F(t) — a(t) — (b(t) + Ab(t))z2(t) S g " ants. it is al e that
B 200 B incer; andr, are positive constants, it is always true tha
(_c(t) + Ac(t))as(t) — g9(t) — 0.004D(t) is negative outside some ball. It concludes that for anyaihit
+d(t) (59) statesz; (0) and z2(0), the solution of the closed-loop system
- is uniformly bounded. The termia (t) (62) is called nonlinear
wherem(t), a(t), b(t), c(t), J(t), D(t), andd(t) are defined in- damping. Recall the definition of; (t) and z(t) in (18) and
(9) and (10);Ab(t) and Ac(t) are bounded unparameterizabl¢19). It can concluded that the distance and speed tracking
system parameters, and the upper bounds|&b(t)| and errors are bounded. We give the conclusion in the following
|Ac(t)| could be unknown. The unparameterizable part @heorem.
parameten(t) can belong tai(t). Theorem 5 The adaptive failure compensation controller
Recall the actuator failure (13)-(15). The control signdb0), with the adaptive scheme (27)-(33), (41), (43) and (44

I
8

(t)

T2 (t)



10

applied to the system (58)-(59) with actuator failures {(13), 1400 < t < 2000, a4 = 8.63x1073, by = 7.295x 1075,
guarantees that all the closed-loop signals are bounded. cs =1.12x107% 6, =0, andD, = 0.
_ _ The indicator functions for the parametes$, ¢, D are chosen
Remark 4: For the nonlinear damping term (¢), there are 55 0-1 functions, while/gs = 0. 25(t—800) for ¢t € [800, 804].

two designed constants > 0 andk, > 0, which determine  case 1 (healthy mode)For the healthy high-speed train,
the convergent ball ot’,. From (65), it can be seen tha; the disturbances are set as:

and k, can be chosen to make the constant te&m+ v 100 sin(0.03¢), € [0,400);
as small as desired, i.e., the tracking errors can achieve an _ 10t
; 200(1 — e~ 19%), ¢ € [400,800);
arbitrary degree of accuracy. The larger the constants 0 dt)=19 J00 € 800, 1400); (66)
andky > 0 are, the smaller the tracking errors and z, are. 0 ’ e [1400, 2000]
In practice,k; and ko are chosen to satisfy the acceptable ’
accuracy of the tracking errors. 0 Choose the initial sates ag0) = [0.55 0]7, and the initial

parameter estimates 88% of their nominal values. The gains
For the high-speed train dynamic model (58)-(59), the timef the adaptive laws in (27)-(31) are chosen2as
varying indicator functions are used to parameterize tmeti  Case 2 (parameterizable failure mode)In this case, 16
varying system parameter for adaption, while the remainimgotors are considered to provide the traction force, ies
unparameterizable parameters are kept, which are dedit wit. Consider the same control scheme is applied for each same
using nonlinear dampinga(¢) in control, to an arbitrary type motor. The effectiveness of the failed motors is edaivia
degree of accuracy. to the failure in one motor. Here, one motor failure is taken
From now on, several different cases about the systénto consideration, which is a constant failure at the beigig
failures and disturbances with unknown parameters have bemd then becomes a time-varying failure. At last, the failed
investigated to design the adaptive controllers. Consiger motor stops completely. The failure is expressedrsfails
the repeatable pattern of the high-speed trains, the cage fbr somea € {1,...,16},
the bounds of the disturbances and unparameterizabledsilu
are known is the most popular. Thus, the adaptive conteller = ¢

2 x 10° t € [600,1000);
roposed in this paper satisfy the real requirements of the ’ ’ ’
Elgﬁ speed trains. hap fy g 2 x 10°(1 + sin(0.05t — 30)), ¢ € [1000,1200);(67)
0, t € [1200,2000].
VIII. SIMULATION STUDY Fs=uvs f#a, Be{l,...,16}.
In this section, the simulation study on a high-speed train The initial conditions are chosen ag)) = [-0.55 0], and

are presented for various operation conditions, to dematest the initial parameter estimates &8@% of their ideal values.
the effectiveness of the proposed adaptive controller& Th Case 3 (unparameterizable failure mode) The parame-
parameters in the simulation are from a real CRH type traitgrizable failure part is same d8, (67) in case 2, while the
which contains 8 vehicles (4 locomotives and 4 carriages).unparameterizable failure terty(¢) is chosen as;(t) = 3 x
Simulation conditions. According to [1], there are several10*sin(0.07t), which is assumed to be the unparameterizable
operating conditions including acceleration, reaccéilena part and is not considered as the basis signal. It can be
constant speed, deceleration, redeceleration, and galewn easily obtained the bound of the unparameterizable part of
until fully stop. The tracking distance curve, as shown ig.Fithe failure, i.e.,3 x 10%. The initial conditions are chosen as

1 (solid line), is considered. z(0) = [0 0]7, and the initial parameter estimates &%
Form the tracking curve in Fig. 1, the train does not stop. Sd their ideal values.
the mass of the train is chosen as a constant,Me+ M = Case 4 (unknown disturbance mode)In this case, the

400 ton. Considering the tunnel, slope and curvature duridgilure is expressed as that in Case 2, and the disturbanees a
the train running, 4 modes are set for the healthy system, et as:

which the parameters; (kN), b; (kN s/m), ¢; (KN s?/m?),

J; (degree), and); are defined in equations (9)-(10), and the d(t)

—10t o
(i) During 0 < t < 400, the train starts. Them, = 8.63 x _ ) 20001 —e . ) +500sin(0.09%), [400 800)
1078, by = 7.295 x 1075, ¢; = 112 x 1075, 6, = 0, 100 +5005in(0.09¢), € [800, 1200);
0, € [1200, 2000]

and D, = 0.
(i) For 400 < t < 800, the train enters a tunnel. Then,The bounds on the disturbances are unknown for the simula-
az = 8.63x1073, by = 7.295x 1075, 5 = 9.12x107°,  tion. The initial conditions are chosen af)) = [-0.65 0]7,

0y =0, and Dy = 0. and the initial parameter estimates #1@% of their ideal
(i) At ¢ = 800, the train leaves the tunnel and travels ivalues.

a curvature and slope track. Durigg0 < ¢ < 1400, Case 5 (unparameterizable system parametersjn this

az = 8.63x1073, b3 = 7.295x 1075, ¢3 = 1.12x107°, case, the disturbancé(t) and failure are expressed as (66)

03 = 0.018, and D3 = 0.34. and (67), respectively. The unparameterizable systermpara

(iv) After t = 1400, the train moves in the open air andetersAb(t) and Ac(t) are set asAb(t) = 0.001 sin(0.02¢),
horizontal track to slow down until fully stop. ForAc(t) = 0.001sin(0.02¢). The initial conditions are chosen as



2(0) = [-0.45 0]7, and the initial parameter estimates are
90% of their ideal values.
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Fig. 1: Distance trajectory tracking performance for the
healthy model.

Simulation results. Fig. 1 shows the simulation results of
the healthy system including the desired distance (solid) a
plant distance (dashed). Fig. 2 shows the distance tracking
errors for cases 1-5. From Fig. 2, it can be seen that there
exist some transit responses, which are caused by the change
of the system parameters or the occurrences of failures. The
simulation results show that the proposed adaptive cdetrol
can achieve the close-loop stability and asymptotic tragki
properties of the train even in the presence of parameters
changes and actuator failures.

IX. CONCLUSIONS

The adaptive failure compensation problem for high-speed
trains with time-varying parameters, disturbances andeadot
failures, is studied. The time-varying indicator functids
introduced to parameterize the time-varying system pateime
s. The adaptive failure compensation controllers with glesi
procedures, both for healthy system, and faulty system with
disturbances, have been developed. Simulation resulisefur
confirm the desired performance of the proposed scheme.
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