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ABSTRACT
Effective image representation plays an important role for
image classification and retrieval. Bag-of-Features (BoF)
is well known as an effective and robust visual represen-
tation. However, on large datasets, convolutional neural
networks (CNN) tend to perform much better, aided by
the availability of large amounts of training data. In
this paper, we propose a bag of Deep Bottleneck Features
(DBF) for image classification, effectively combining the
strengths of a CNN within a BoF framework. The DBF
features, obtained from a previously well-trained CNN,
form a compact and low-dimensional representation of the
original inputs, effective for even small datasets. We will
demonstrate that the resulting BoDBF method has a very
powerful and discriminative capability that is generalisable
to other image classification tasks.

General Terms
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1. INTRODUCTION
Effective image representation plays an important role in

content based recognition and retrieval applications. Over
the past decade, representations based on local features,
known as bag-of-features (BoF) methods, were considered
to be state-of-the-art, especially for SIFT [11] descriptors
extracted from small patches. It has been shown that BoF
methods may provide a degree of robustness to the changes
caused by image scaling, translation and occlusion.

Recently, deep convolutional neural networks(CNN)[9]
have achieved outstanding performance in large scale vi-
sual recognition competitions. This may be attributed
to the high-capacity of CNN structures, with millions of
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parameters tuned from large scale dataset like Imagenet [4].
However, for some benchmark image recognition tasks,
such as PASCAL VOC [6] and MIT Scenes [14], the
performance of CNN is limited due to relative lack of
training data. In such cases, a number of recent works
[5, 7, 12, 15, 3] have indicated that it is preferable to
transfer a previously well-trained CNN rather than to learn
one directly using limited training data. For example,
Razavian et.al. conducted a series of experiments for
different recognition tasks, and demonstrated the superiority
of the features extracted from a pre-trained CNN [15]. At
the same time, Chatfield et.al. [3] report comprehensive
comparisons between CNN and Improved Fisher Vector
(IFV) leading to similar conclusions as [15].

Despite the proven superiority of CNN based features,
they have been empirically shown to still be fairly sen-
sitive to global translation, rotation and scaling in terms
of classification accuracy [8]. Furthermore, it is argued
that the images in various benchmark datasets may have
significant different statistics [17]. The transferability of
CNN activations decreases as the distance between source
dataset and the target one increases [19]. It may therefore
be interesting to use a pre-trained CNN for front-end feature
extraction (to yield good features), while still exploiting a
BoF framework to enjoy more robust image representation.
The issue is on how to effectively encode and aggregate the
higher dimensional CNN features for diverse tasks which
contain limited training data.

In this paper, we thus propose using a structured CNN
containing a bottleneck layer as the front-end feature ex-
tractor. As shown in Fig. 1, the number of hidden nodes in
the bottleneck layer (i.e. FC7) is much smaller than other
fully-connected layers. The CNN training will then force the
activations in the bottleneck layer to form a low-dimensional
compact representation of the original input. We denote the
output vector of that constricted internal layer as the Deep
Bottleneck Feature (DBF). Then, a bag-of-DBFs (BoDBF)
method is proposed in which a second-order pooling scheme
is applied on top of the DBFs. To evaluate the effectiveness
of the proposed BoDBF method, we conduct extensive
experiments on PASCAL VOC [6] and MIT Scenes [14]. It
is shown that the proposed BoDBF can achieve state-of-
the-art performance on these image classification problems,
especially for the MIT Scenes dataset.

Section 2 will introduce a BoDBF framework for image
classification. A general BoF pipeline is first briefly re-
viewed, and then a CNN with a bottleneck layer is detailed
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Figure 1: The BoDBF classification framework.

as the front-end feature extractor. After that, a second-order
pooling scheme [2] is introduced for constructing robust
image representation. Section 3 will evaluate the technique
by reporting experimental classification results for PASCAL
VOC 2007 and MIT Scene datasets. Section 4 presents
conclusions and discusses the potential for future extension
of this research.

2. DBF BASED CLASSIFICATION
The DBF based image classification framework is shown

in the middle of Fig 1, which follows the traditional BoF
pipeline. Generally speaking, BoF methods map the local
features (i.e. SIFT) into a fixed-length histogram. The
process mainly consists of two main phases: (i) Feature
Encoding assigns every local feature to the nearest visual
words in a dictionary. The dictionary would generally have
been obtained off-line through a clustering process on a large
local feature set. (ii) Spatial pooling counts occurrences of
visual words in the image (or in spatial regions) to form a
histogram representation.

From the perspective of convolution, there exists an
intrinsic link between SIFT features and CNN activations.
SIFT may be described as forming histograms (pooling
results) of oriented edge filter responses, arranged in spatial
blocks. Meanwhile, CNN activations are obtained by passing
a raw image through multiple layers, each of which contain
convolution and pooling operations, outputting a single
high-dimensional (i.e. 4096) vector from subsequent fully-
connected layers. In each layer, the input data is convolved
with learned filters and then non-linearly transformed to
output activations, and often a spatial pooling operation
is applied before output. Some major differences between
CNN activations and traditional SIFT features are:

large/small: SIFT features are extracted from either dense
grids or detected Regions of Interest (ROIs), whereas
CNN activations can preserve more spatial information
over a larger patch size.

deep/shallow: From the perspective of CNN, SIFT fea-
tures are the output of a shallow structure, whereas
CNN activations can be derived from deeper layers,
providing a compact mid-level representation of the
original image. Zeiler et.al. showed that the recon-
struction of the activations from deeper convolutional
layers resembles the original image [20].

learned/fixed: The edge filters used for extracting SIFT
features are generally hand-crafted, while in CNN, the
filters are discriminatively learned from training data.

Due to the superior performance of CNN on large-scale
visual recognition, we are interested in using the activations
from deep CNN structure instead of SIFT features for
effective image representation. However, these activations
are generally with higher dimension, which is difficult to be
modeled using traditional unsupervised learning methods.
We thus introduce a special CNN structure with bottleneck
layer as a front-end feature extractor.

2.1 CNN structure with Bottleneck Layer
The structure of CNN with bottleneck layer is shown on

the top of Fig. 1. This is an 8-layer Zeiler and Fergus’s
(ZF) style CNN [20], consisting of five convolutional layers
(C1-C5) and three fully-connected layers (FC6-FC8). The
input image size is 224 × 224. The filter numbers (sizes)
of the five convolutional layers are: 96(7 × 7), 256(5 × 5),
512(3× 3), 512(3× 3) and 512(3× 3) respectively. The first
two convolutional layers have a stride of 2 pixels, and the
rest have a stride of 1 pixel.

In our current implementation, the fully-connected layer
FC7 is chosen as the bottleneck layer. This deep CNN
is trained on the Imagenet dataset and has performance
comparable to AlexNet [9] on the validation set with
moderate training time.

In the BoDBF framework, we use this deep CNN structure
following the BoF pipeline: the output of convolutional
layers can be considered as the patch descriptor, and the
bottleneck layer functions likes an encoder to produce
compact codes. These codes are further pooled together
to produce a global description of the image which is robust
to slight transformations.

2.2 Second-order pooling of DBFs
Given a collection of m patch codes D = (X,F), where

X = (x1, . . . ,xm),xi ∈ Rn are the DBFs extracted from
patches centered at positions F = (f1, f2, . . . , fm), fi ∈ R2.

The simplest pooling method consists in averaging the
feature vectors within a spatial neighborhood, which we
term first-order pooling (O1P): P1 = 1

m

∑m
i=1 |xi|

In this paper, we introduce a more effective second-order
method that can capture the pairwise correlations between
DBFs extracted from an image. These correlations can be
defined using an outer product of DBFs, which is symmetric
positive definite (SPD). The second-order pooling (O2P) is

P2 =
1

m

m∑
i=1

xi · x>
i (1)

From the perspective of computational differential geom-
etry [1], the set of symmetric positive definite matrices
forms a Riemannian manifold, a non-Euclidean space. Note
that linear SVM generally follows pooling, for reasons of
efficiency. However in this case it is not optimal for a linear
SVM to be trained from second-order pooling outputs. To
address this issue, a log-Euclidean metric is proposed to map
the SPD matrix P2 to a tangent space, P2 = log(P2). It
is proven with strong theoretic guarantees that this type of
map can preserve the intrinsic geometric relationships as de-
fined in the original Riemannian manifold [1]. Furthermore,
the signed-square-root and l2-normalization, corresponding
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Table 1: Comparison of results on Pascal VOC 2007 dataset of each 20 classes in terms of mAP(%)
method/object class aero bicyc bird boat bott bus car cat chair cow

CNN-SVM [15] 89.7 81.4 86.0 85.3 45.7 76.2 84.6 84.9 64.5 62.5
SCFVC [10] 89.5 84.1 83.7 83.7 43.9 76.7 87.8 82.5 60.6 69.6
DBF-O2P 91.7 86.0 88.8 88.0 55.0 80.5 86.4 88.4 65.3 73.2

method/object class table dog horse m-bike person plant sheep sofa train tv
CNN-SVM [15] 70.0 80.3 83.0 78.0 87.7 50.1 75.8 59.8 88.8 72.5

SCFVC [10] 72.0 77.1 88.7 82.1 94.4 56.8 71.4 67.7 90.9 75.0
BoDBF-O2P 74.7 85.4 88.4 83.7 91.4 60.5 81.2 67.4 91.4 78.5

Table 2: Comparison of results on Pascal VOC 2007.
The mean average precision over 20 classes in terms
of mAP(%)

Method MAP Comment
SCFVC [10] 76.9 with single scale

CNN-SVM [15] 73.9 on whole image

CNNaug-SVM [15] 77.2 with augmented data

CNN-SVM [3] 78.6 with augmented data

BoDBF-O1P 75.4 single scale patches

BoDBF-IFV 76.1 CNN for single scale patches

BoDBF-O2P 80.6 CNN for single scale patches

to the Hellinger kernel map [18] is also applied before
classification.

3. EXPERIMENT AND ANALYSIS
To evaluate the effectiveness of the proposed bag-of-DBFs

method, we conduct extensive experiments on PASCAL
VOC 2007 and MIT Scenes datasets.

3.1 Experimental Setting
The DBFs are extracted as follows: firstly the input

images are resized so that their maximize dimension is 512
and their minimum dimension is at least 224. Next, patches
of size 224 × 224 pixels are cropped from each image with
a stride of 8 pixels. The patches are then fed into a pre-
trained deep CNN, and the activations from the bottleneck
layer (i.e. FC7) are used as DBFs. In our implementation,
we exploit several deep CNN structures trained by [3] with
FC7 dimensions of 128, 1024 and 2048. Use of these
publicly available pre-trained structures is important in
ensuring that our approach can be compared fairly with
other methods. We implement the following alternative
systems for comparison: 1. BoDBF-IFV: using the IFV
method based on DBFs [16, 13]. 2. BoDBF-O1P: using
first-order pooling, i.e. average pooling based on DBFs. 3.
BoDBF-O2P: using second-order pooling based on DBFs.
In addition, we also compare with several reported state-of-
the-art methods with similar settings [8, 10].

3.2 Experiments on PASCAL VOC 2007
The PASCAL-VOC 2007 dataset [6] consists of 9963

images from 20 classes. These images include indoor
and outdoor scenes, close-ups and landscapes, and strange
viewpoints. The dataset is divided into three parts: (i)
a training set of 2501 images, (ii) a validation set of
2510 images and (iii) a test set comprising 4952 images.
Results are shown in Table 2. It is clear that the proposed
BoDBF-O2P method outperforms our own BoDBF-01P and

BoDBF-IFV by 5% − 6%. Furthermore, we compare the
results with other state-of-the-art CNN systems, CNN-
SVM1 [15], SCFVC [10] and CNN-SVM2 [9]. CNN-
SVMs using the same CNN structure can achieve 78.6%,
which is the closest to the performance of our BoDBF-
O2P system. SCFVC [10] uses sparse coding techniques
for Fisher vector encoding, outperforming the BoDBF-O1P
and BoDBF-IFV. However, the computational complexity of
SCFVC may become expensive with high dimensional CNN
features. Table.1 shows the detailed comparisons for the 20
categories, demonstrating that BoDBF-O2P achieves best
performance in 16 categories, as well as being competitive
in the remaining 4 categories.

3.3 Experiments on MIT Scenes dataset
The MIT scenes dataset contains 6700 images over 67

indoor scene categories. For each category, the standard
training/test split consists of 80 training and 20 test images.
This dataset is quite challenging due to the subtle cross-
category difference. Moreover, the contents of this dataset
are more different from Imagenet than PASCAL VOC 2007
is, which may help to evaluate the generalization capability
of our proposed BoDBF.

Classification results are compared in Table 3. Again,
the proposed BoDBF-O2P method significantly outperforms
BoDBF-IFV and BoDBF-O1P. We notice that the CNN-
SVM method [15, 3] perform quite well, and are closer
to BoDBF on the PASCAL VOC dataset than they are
on MIT Scenes. To the best our knowledge, the state-
of-art performance on the MIT Scenes dataset is achieved
by MOP-CNN [8], which concatenates the CNN activations
using three different scales. SCFVC [10] can achieve similar
performance. Compared to them, the performance of the
proposed BoDBF-O2P is as high as 72.8%, which is by far
the best on this dataset.

3.4 Discussion
We have evaluated the performance of the proposed

BoDBF-O2P on two benchmark object datasets, i.e. PAS-
CAL VOC and MIT Scenes. Results clearly show that
the BoDBF framework can take advantage of both the
robustness of BoF and the improved representation power of
a deep CNN. Unlike existing methods including [8, 10], we
use a fully-connected bottleneck layer as the feature encoder.
Second-order pooling capture the fact that activations from
the deep CNN layer are not Euclidean distributed.

Furthermore, we evaluated the performances BoDBF-
O2P using activations from CNN structures with different
bottleneck sizes of 128, 1024 and 2048. For 1024 and 2048
dimension DBFs, principal component analysis (PCA) was
applied to reduce them to the same 128 dimensions. All
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Table 3: MIT Scenes performance reporting
precision averaged over all 67 classes in terms of
mAP(%)

Method MAP Comments
SCFVC [10] 68.2 with single scale

CNN-SVM [15] 58.4 CNN feature for whole image

MOP-CNN [8] 68.9 for patches with three scales

BoDBF-O1P 59.8 for patches with single scale

BoDBF-IFV 66.2 for single scale patches

BoDBF-O2P 72.8 for single scale patches

results reported above used 1024 dimension DBFs reduced
to 128 dimension using PCA. Thus the final dimension of
BoDBF-O2P was 128 × 129/2 = 8256, which is less than
MOP-CNN (4096 × 3 = 12288) and SCFVC (100 × 1000 =
100, 000). Detailed comparisons for all dimension DBFs are
shown in Table. 4, which indicates that all yield competitive
performance and larger sizes may be unnecessary.

Table 4: The effect of different layer size in terms of
mAP (%)

Dataset/Dimension 128 1024 2048
PASCAL VOC 80.3 80.6 79.1
MIT 67 Scenes 69.9 72.8 70.0

4. CONCLUSION AND FUTURE WORK
This paper has presented a novel image classification

framework (i.e. BoDBF) based on a carefully designed
CNN structure that contains a narrow bottleneck layer.
The CNN, having been trained on a large image dataset,
is used as the front-end feature extractor for other visual
recognition tasks. In the proposed BoDBF framework, the
output of convolutional layers are considered as the patch
descriptors, and the bottleneck layer functions as an encoder
to produce compact codes, i.e. DBFs. Second-order pooling
scheme is further introduced to explore the correlations
between DBFs. The BoDBF can take advantage of both
the robustness of BoF and the improved representation
power of a deep CNN, performance is excellent. In fact
the experimental results, on benchmark datasets such as
Pascal VOC 2007 and the MIT 67 Scenes dataset, reveal
that performance exceeds that of current state-of-the-art
approaches. The current results are for a relatively untuned
network. In future, we would like to experiment with
different CNN structures, including assessing the effects of
the dimension and location of the bottleneck layer (e.g.
moving it to FC6 or FC8).
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