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Targeted Amino-Terminal Acetylation of Recombinant
Proteins in E. coli
Matthew Johnson., Arthur T. Coulton., Michael A. Geeves, Daniel P. Mulvihill*

School of Biosciences, University of Kent, Canterbury, United Kingdom

Abstract

One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the
expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-
expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method
for the expression and purification of functional N-terminally acetylated eukaryotic proteins.
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Introduction

In eukaryotic cells up to 98% proteins are N-terminally

acetylated [1]. In many of these cases the acetylation is required

for normal function e.g. a-crystallin, S-adenosylmethionine

decarboxylase, thymosin and components of the 26S proteasome

regulatory particle [2,3,4,5]. In others N-terminal acetylation is a

regulatory event e.g. fission yeast tropomyosin (Tm), Cdc8 [6]. In

all cases the acetylation stabilises the protein by protecting it from

degradation via N-terminal proteases.

How acetylation is brought about and how it changes protein

function is poorly understood. Amino terminal acetylation within

eukaryotes is carried out by N-a-acetyltransferase (Nat) complexes

and is thought to take place co-translationally at the ribosome [7].

Currently 3 distinct classes of Nat complexes have been identified

(NatA, B & C) [8], each composed of distinct catalytic and

regulatory subunits. These complexes associate with specific and

distinct target sequences at the amino terminus of elongating

polypeptides.

The lack of Nat complexes or their equivalents within

prokaryotes has prevented the use of E. coli expression systems

for producing N-terminally acetylated proteins. Although gram-

negative bacteria, such as E. coli, are capable of acetylating

components of their own proteome, it occurs infrequently and is

undertaken by a discrete molecular pathway. The inability to

produce N-terminally acetylated eukaryotic proteins in E. coli

limits the ability to generate low cost proteins & peptides.

Researchers are currently dependent upon the use of compara-

tively expensive and time-consuming chemical acetylation or

eukaryotic expression systems to complete functional studies on

these proteins.

Here we describe a novel system in which it is possible to

produce N-terminally acetylated recombinant proteins from

bacteria. By co-expressing the fission yeast NatB acetylation

complex together with the target NatB substrate protein we have

been able to acetylate and purify proteins from within E. coli. We

went on to show that the same expression system works for each of

the three N-terminal recognition sequences and successfully

expressed acetylated human (Tropomyosin and Spartin) and yeast

proteins (S. pombe Cdc8 and S. cerevisiae Tfs1). This simple and

reliable methodology has the potential to allow significant savings

in time and money over current techniques for generating amino-

terminally acetylated recombinant polypeptides for both research

and industrial applications.

Results

Using a system based on the fission yeast NatB acetylation

complex (Figure 1A), we have developed a method in which these

are co-expressed together with target substrates in E. coli

(Figure 1B). NatB conjugates an acetyl group on the amino

terminal methionine of peptides with Met.Asp, Met.Glu or

Met.Asn as N-terminal sequences and therefore acetylate a

significant proportion of eukaryotic proteins [8].

Mammalian striated muscle a-Tropomyosin (Tm) is an

evolutionarily conserved actin binding protein that is a substrate

for the NatB complex [9,10]. This protein is readily expressed and

purified from E. coli [11], and since the amino-terminal acetylation

is essential for actin binding [11] it provides a simple test system

for successful acetylation.

We co-transformed E.coli cells with the plasmid containing

cDNA encoding for both catalytic (Naa20) and regulatory

(Naa25) subunits of the fission yeast NatB complex, together

with a plasmid encoding the murine a-skeletal Tm gene. These

genes were co-induced (Figure 1B) and the Tm was isolated. Tm

was purified and mass spectroscopy analysis shown that .60%

of the Tm had been successfully acetylated (Figure 2A). This is in

contrast to Skeletal Tm purified from standard BL21 cells which
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remained unacetylated (Figure 2B). The acetylated protein

was shown, using an actin sedimentation assay, to bind actin

with an affinity equivalent to the native protein [12], whereas the

non acetylated protein failed to bind at Tm concentrations of

up to 20 mM (Table 1). The muscle Tm has the N-terminal

sequence Met-Glu. We went on to acetylate further proteins to

confirm this prokaryote acetylation system worked for proteins

with each of the NatB recognition sequences. Functional fission

yeast Tm (Cdc8, N-terminal: Met.Asp) [6] was successfully

produced (Figure 3) and bound to actin filament six times tighter

than unacetylated yeast Tm [6]. Both human Spartin [6] (N-

terminal: Met.Glu) and the budding yeast Tfs1 [13] (N-terminal:

Met.Asn) proteins were also successfully acetylated and purified

using affinity chromatography (data not shown) from E. coli

(Table 1).

Three of the four target proteins expressed (SkTm, Cdc8, Tfs1)

showed a 2–3 fold increase in yield when co-expressed with the

NatB complex compared to standard expression systems. Whether

this reflects an increase in the stability of the acetylated protein is

unclear, and is currently under investigation. However the level of

acetylation was variable from 25–100% for the four proteins. This

may be improved by temporal control of expression to ensure

NatB is both expressed and functional before the target protein is

expressed. We have not yet examined whether the endogenous E.

coli proteins were acetylated in the BL21-NatB cells, but if this was

the case there was no associated detrimental effect upon cell

morphology or growth.

Discussion

Nat complex dependent amino-terminal acetylation has been

assumed to occur on the eukaryote ribosome. If this were to be the

case then our result would demonstrate that NatB is able to

function at either the pro- or eukaryotic ribosome. However, as

the composition of the bacterial and eukaryote ribosomes differ

significantly it is uncertain how and where NatB functions within

the bacterial cell, and is under further investigation.

The efficient and simple method we described in this paper has

the potential to allow significant savings in time and money over

current methods for chemically acetylating amino termini of many

proteins and peptides, and also in improving yield dur-

ing recombinant protein production. The ability to produce

acetylated protein will now allow more detailed studies of the role

of protein acetylation in protein stability, regulation of structure and

function, as well as allowing the generate low cost proteins and

peptides for the biotechnology & pharmaceutical industries.

Materials and Methods

Molecular Biology
naa20+ (SPCC16C4.12) and naa25+ (SPBC1215.02c) genes were

amplified from genomic S. pombe DNA as Nde1-BamH1 and Sal1

fragments respectively and cloned into pGEM-T-Easy (Promega).

Introns were removed sequentially by ligating blunt ended

products of PCR reactions where appropriate primers had been

Figure 1. Generation of an E.coli NatB complex co-expression strain. (A) Introns (black regions) were removed from genes encoding the NatB
subunits Naa20 (white) and Naa25 (grey), and the subsequent cDNAs were each cloned into the same bacterial expression vector (pNatB). (B) Whole
cell lysates from BL21-DE3 cells containing either pNatB alone (left), pTarget (encoding the target protein alone - middle), or both pNatB & pTarget
(right) were separated by SDS-PAGE following IPTG induction and visualised using coomassie stain. These data confirmed the successful co-
expression of the NatB complex and target proteins in E. coli.
doi:10.1371/journal.pone.0015801.g001

Amino-Terminal Acetylation in E. coli
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Figure 2. Electron-spray mass-spectroscopy spectra for a-SkTm. a-SkTm tropomyosin was purified from either E. coli BL21-pNatB cells (A) or E. coli
BL21 cells (B). The undeconvolved mass charge envelope spectra show the purity of the proteins. Deconvolution of these data indicates that while ,60% of the
a-SkTm purified from BL21-pNatB cells is acetylated (additional 42 daltons mass), all of the Tm purified from standard BL21 cells remains unacetylated.
doi:10.1371/journal.pone.0015801.g002

Table 1. Yield, acetylation efficiency and actin affinity of target proteins heterologously expressed in E. coli.

Protein Host N-term
% Acetylated in
BL21 pNatB* Protein Yield3 KD for actin

- NatB + NatB - NatB + NatB

Cdc8 Tm S. pombe M-D- 100%1,2 8.8 19.2 2.76 mM 0.45 mM

Skeletal Tm M. musculus M-E- 60%1,2 9.36 20.22 .20 mM 0.6 mM

Tfs1 S. cerevisiae M-N- 30%1,2 1.6 5.4 - -

Spartin H. sapiens M-E- 25%2 0.315 0.332 - -

*determined by mass spectroscopy1 or 2-dimensional gel electrophoresis2;
3mg purified protein/litre of culture.
doi:10.1371/journal.pone.0015801.t001

Amino-Terminal Acetylation in E. coli
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used to amplify the entire plasmid lacking individual introns.

Subsequent cDNAs were sequenced and cloned into pACYCduet

(Novagen), each under the control of separate T7 promotors, to

generate pACYCduet-naa20+-naa25+ (pNatB). BL21 DE3 cells

were co-transformed with pACYCduet-naa20+-naa25+ and a

pJC20 plasmid containing the cDNA encoding for the appropriate

target protein also under the control of the T7 promoter (pTarget).

Cell Culture
E. coli cells were cultured in NZY medium (1.0% Casein

hydolysate (NZ amine), 0.5% NaCl, 0.5% yeast extract, 20 mM

D-Glucose, 12.5 mM MgCl2 and 12.5 mM MgSO4) supplement-

ed with appropriate antibiotics, and were grown in baffled

Erlenmeyer flasks at 37uC with vigorous shaking. T7 dependent

expression was induced by addition of IPTG (100 mg/ml final

concentration) once cell cultures had reached an OD600 of 0.4–

0.5. Cells were harvested 4 hr after induction with IPTG. Protein

expression was assessed by separating whole cell lysates using SDS-

PAGE and visualizing proteins with Coomassie blue stain.

Biochemical techniques
Tropomyosin proteins were expressed and purified as described

previously [6], while poly-histidine tagged proteins were purified

on nickel columns (Qiagen) in denaturing conditions (8 M urea,

0.1 M NaH2PO4 0.01 M Tris-Cl). Protein concentrations were

determined using 280 nm extinction coefficients of 2,980 cm21,

27,600 cm21, 27,550 cm21 and 64,070 cm21 for Cdc8, a-SkTm,

Tfs1 and Spartin respectively. Protein mass was determined using

a Finnegan Mat LCQ ion-trap mass spectroscope. Cosedimenta-

tion assays were performed at 25uC as described previously [14].

We made use of the fact that acetylated SkTm migrates separately

to the unacetylated form on SDS-PAGE to determine the KD for

of the acetylated population of Tm.
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