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Abstract—Online continuous measurement of the mass flow rate of pneumatically conveyed solids in a square-shaped pipe is desirable for monitoring and optimizing industrial processes. However, existing techniques using a single type of sensor have limitations in measuring the mass flow rate of solids because of the complexity of the dynamics of solids flow due to the four sharp corners of a square-shaped pipe. This paper proposes a multi-sensor fusion and data-driven modelling-based method to tackle this challenge. A multi-sensor system based on acoustic, capacitive, and electrostatic sensing principles is designed and implemented to obtain the sound pressure level in the flow, volumetric concentration of solids, and solids velocity, respectively. Simultaneously, a range of statistical features is obtained by performing time-domain, frequency-domain, and time-frequency domain analyses on all sensor signals. The statistical features reflecting the variation of the mass flow rate of solids, as well as solids velocity and volume concentration of solids, are then fed into a data-driven model. A data-driven model based on a combined convolutional neural network and long short-term memory (CNN-LSTM) network is established, and its performance is compared with those of the back-propagation artificial neural network, support vector machine, CNN, and LSTM models. Experimental tests were conducted on a laboratory-scale rig on both horizontal and vertical pipelines to train and evaluate the CNN-LSTM model with solids velocity ranging from 11 to 23 m/s and the mass flow rate of solids from 8 to 26 kg/h. The CNN-LSTM model outperforms all other models with a relative error within ±1% under all test conditions.
Index Terms—gas-solid two-phase flow, mass flow rate measurement, square-shaped pipe, multi-sensor fusion, data-driven modelling.

INTRODUCTION

S
QUARE-shaped pipes are widely used in a variety of industrial processes, such as the emission of smoke and dust from boiler combustion in factories, ventilation systems in buildings and air conditioners, and conveying fuels in thermal power plants in certain countries [1], [2]. Obtaining the mass flow rate of solids in such pipelines or ducts is conducive to optimizing the operation of industrial processes and reducing energy consumption. 

Various measurement techniques based on different sensing principles have been developed for measuring the mass flow rate of solids in both circle and square pipes, including acoustic [3], capacitance [4], electrostatic [5], microwave [6], nuclear magnetic resonance (NMR) [7], and optical [8] methods. The microwave, NMR, and optical sensing techniques have poor applicability due to their complicated systems, high cost, and susceptibility to interference. Nevertheless, the simple, cost-effective, and easy-to-maintain structure of acoustic, capacitive, and electrostatic sensors makes them highly promising for the measurement of the mass flow rate of solids [9], [10], [11], [12]. Acoustic sensors are typically employed to measure the elastic waves resulting from the interaction between solids and pipelines, with the root mean square (RMS) of the signal being used to characterize the mass flow rate of the solids [13]. This approach is not entirely reliable, as the RMS of the acoustic signal can be affected by variables such as solids velocity, mass, and size. Both electrostatic and capacitive sensors determine the mass flow rate of solids by measuring solids velocity and concentration. Electrostatic sensors have high accuracy in measuring solids velocity, but the main problem lies in characterizing the concentration of solids using the RMS magnitude of the output signal from the sensors, which depends on a range of physical factors such as solids velocity, size, shape, ambient temperature and humidity, and more [14]. In contrast, capacitive sensors are better suited for measuring the concentration of solids, but they are less accurate for measuring solids velocity due to the unstable output from the sensor caused by the inhomogeneous distribution of solids in the pipeline. Based on the above analysis, it can be concluded that it is difficult to measure the mass flow rate of solids under various flow conditions with only one type of sensor since each type of sensor has its limitations in terms of sensing principles. Therefore, it is necessary to consider the combination of these three types of sensor for the intended measurement. Moreover, there is limited research on utilizing multi-sensor (acoustic, capacitive, and electrostatic sensors) fusion technology to measure the mass flow rate of solids in a square-shaped pipe. The acoustic sensors, in particular, are used to measure the aerodynamic sound generated in the gas-solid two-phase flow in the pipe since the acoustic wave is closely related to the mass flow rate of solids [15]. Meanwhile, electrostatic and capacitive sensors are incorporated to measure the solids velocity and volumetric concentration, respectively.
In recent years, data-driven techniques have been widely used to monitor gas-solid two-phase flow characteristics. Numerous studies report the progress made in the measurement of gas-solid two-phase flow using this technology. For example, Aminu et al. [16] used an acoustic sensing technology coupled with a time-delay neural network to measure the mass flow rate and concentration of solids, line pressure drop, and gas velocity. Abbas et al. [17] proposed a technique based on multimodal sensing and machine learning models for the mass flow rate measurement of pneumatically conveyed solids. Moreover, Zhang et al. [18] established a machine-learning prediction model for the mass flow rate measurement of solids in a horizontal dense-phase pneumatic conveying pipe. The aforementioned studies used data-driven models to directly characterize the complex mapping relations between a large amount of measurement data from sensors and the parameters to be measured, with promising results. This suggests that data-driven models have a significant advantage in the nonlinear fitting of multi-dimensional data. However, when the measured data are derived from multiple types of sensor, the mapping between the measured data and the parameters to be measured is more complicated, which requires data-driven models with stronger nonlinear fitting capabilities. 
Unlike previous research that combined capacitive and electrostatic sensors [19], [20]. The structure of the capacitive and electrostatic sensors used in this study is also different from those used in previous studies. Moreover, previous research utilized indirect methods to obtain the mass flow rate of solids based on the measured particle velocity and concentration of solids whereas this paper uses data-driven modelling techniques. Data-driven modelling is advantageous in processing multi-dimensional data over traditional indirect methods. In addition, most previous studies focused on flow parameters in circular pipes, but this study aims to measure the mass flow rate of solids in square pipes. The dynamics of solids flow in a square-shaped pipe are more complex than those in a circular pipe due to the existence of four sharp corners on the pipe wall. To address the challenge of measuring the mass flow rate of pneumatically conveyed solids in a square-shaped pipe, this paper presents a novel approach incorporating multi-sensor fusion and data-driven modelling. A multi-sensor system based on acoustic, capacitive, and electrostatic sensing principles is designed and implemented. Then, a data-driven model is established and utilized to map the complex relationship between the sensor data and the mass flow rate of solids. The performance of the model is evaluated under a range of experimental conditions. 
METHODOLOGY
Overall Measurement Strategy

The overall strategy for the measurement of the mass flow rate of solids in a square-shaped pipe through multi-sensor fusion and data-driven modelling is shown in Fig. 1. Firstly, multiple parameters related to the mass flow rate of solids, including the solids velocity, volumetric concentration, and statistical features, are obtained by performing a series of pre-processing of the sensor signals. Here the solids velocity is obtained by cross-correlating the signals from the electrostatic sensors. The volumetric concentration of solids is determined from the amplitudes of the outputs from the capacitive sensors with reference to those when there is only airflow in the pipeline. The statistical features of the signals from all sensors are extracted in the time, frequency, and time-frequency domains. To avoid the effect of invalid statistical features on the training of data-driven models, the maximum relevance and minimum redundancy (MRMR) algorithm [21] is used to select the effective statistical features. The solids velocity, volumetric concentration, and selected statistical features are then fed into a data-driven model based on a combined convolutional neural network and long short-term memory (CNN-LSTM) network for predicting the mass flow rate of solids. Finally, the predicted results are evaluated to validate the effectiveness of the proposed method.
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Fig. 1. Principle of mass flow rate measurement through multi-sensor fusion and data-driven modelling.
Sensing System
The multi-sensor system is comprised of a sensing head, a signal conditioning unit, a data acquisition device, and a computer. The structure of the sensing head is shown in Fig. 2. The sensing head is made up of four identical printed circuit boards (PCB), which are mounted on each of the four inner surfaces of the square-shaped pipe. Three identical strip-shaped electrostatic electrodes and one capacitive electrode are fabricated on each PCB. The PCB is a four-layer board. The first layer (top layer) is an insulating layer, which is used to insulate the second layer (electrode layer) from the solids flow. Therefore, the electrostatic electrode measures charged solids through electrostatic induction. The third layer is the shielding layer, which is used to reduce the interference of external noise on the electrode signal. The fourth layer (bottom layer) is the signal processing layer, which is mainly used to amplify the minute signal from the electrostatic sensor. The length of the electrostatic electrode is 35 mm, the width is 2 mm, and the center-to-center spacing between two adjacent electrodes is 10mm. The length of the capacitor plate is 50 mm, and the width is 35 mm. The acoustic sensor is located between the electrostatic and capacitive sensors. The acoustic sensors are embedded by drilling holes in the pipe wall. It is worth noting that the acoustic sensor does not invade the fluid, and its front end is flush with the inner surface of the pipe. In addition, a dust screen made of polytetrafluoroethylene is installed in front of the acoustic sensor to avoid damage caused by the impact of moving solids. The acoustic waves generated by the movement of gas-solid two-phase flow in the pipeline include audible and high-frequency sound [22], [23]. However, high-frequency acoustic waves attenuate greatly in the airflow. Therefore, the acoustic sensor with a bandwidth of 20–20k Hz is selected for the intended measurements.
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Fig. 2. Structure of the sensing head
The signal conditioning unit is primarily used for processing the outputs from the sensors to obtain useful features for inferring the mass flow rate of solids. The unit consists of acoustic, capacitive, and electrostatic detection circuits. The acoustic signal conditioning circuit is used to amplify the weak signal from the acoustic sensor. The capacitance detection circuit is based on the AC method [24], [25]. In this method a high-frequency AC signal (frequency of 500 kHz) is applied to the capacitive sensor as an excitation. The core of the method is to convert the capacitive signal into a voltage signal and then apply band-pass filtering to reduce the effect of the induced electrostatic signal. Finally, a phase-sensitive detector consisting of a multiplier and a low-pass filter is used to demodulate the voltage signal into a DC signal and perform differential amplification. The electrostatic signal conditioning circuit converts the weak current signal from the electrode into a voltage signal and conducts amplification and filtering. Finally, all conditioned signals are connected to a 32-channel data acquisition card in a host computer. In addition, since the three types of sensors are not installed at the same location along the pipeline, there is a slight time difference between the sensor signals. This time difference is compensated in the signal processing stage to minimize the effect of signal asynchrony on the measurement results. The time difference is estimated from the spacing between the respective sensors as well as the solids velocity measured from the electrostatic sensors.
Feature Extraction

In general, if a data-driven model is expected to have excellent predictive performance, it is necessary to feed as many parameters as possible that are capable of characterizing the target output into the model with acceptable model complexity. A total of 22-channel sensor signals, including 4-channel signals from the acoustic sensors, 6-channel signals from the capacitive sensors, and 12-channel signals from the electrostatic sensors, are obtained using this sensing system. By analyzing these signals in the time domain, frequency domain, and time-frequency domain, a range of statistical features is extracted. Table Ⅰ summarizes the symbols and the equations of these features. There are 17 statistical features, including nine features in the time domain, four features in the frequency domain, and four features in the time-frequency domain. The physical meanings of these features are different. The features that characterize the fluctuation characteristics of solids motion include kurtosis, skewness, standard deviation, number of zero crossings, slope sign changes, and wavelength. The RMS value, peak amplitude, and signal power represent the intensity of the sensor signals. These three parameters are closely associated with the magnitude of the mass flow rate of solids. It is worth noting that not all of these parameters contribute to the model predictions, and some may be less effective or redundant. Therefore, feature selection is necessary.

TABLE I  

STATISTICAL FEATURES

	
	Description
	Symbol
	Equation
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Feature Selection
Deep learning models do not normally require feature selection from the sensor data and this is what we did initially. However, we have found that the results without feature selection are not satisfactory and that model training is time-consuming. For this reason, appropriate features from the sensor data are selected to serve as input parameters for all models in this study. Through feature selection, irrelevant and redundant feature parameters are removed, which not only reduces the complexity of the model but also helps to improve the prediction accuracy of the model. In this study, the MRMR algorithm is used for feature selection. The algorithm uses mutual information to characterize the relevance between input features and target outputs [26]. Assuming that the mutual information between the input feature x and the target output y is I(x;y), which can be expressed as:
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where p(x) and p(y) are the marginal probability densities of the corresponding variables, respectively, and p(x,y) is the joint probability density of these two variables.

Then, the features closely associated with the target output are selected from the given feature set F. The set S = {x1,x2,…,xm} composed of these selected features should meet the following equations: 
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where |S| represents the number of features and D represents the average mutual information between all input features and the target output.

However, there may be redundancy in these selected features. Remove the redundant features in set S by the following equations:
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where R represents the redundancy among the features.

Finally, the results of equations (2) and (3) are processed as follows:
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where Φ represents the importance coefficient of the feature. These features are sorted according to their importance coefficients, and the features with heavy importance coefficients are selected as the input parameters for the data-driven model.

Data-Driven Models
It is difficult to characterize the complex relationship between the multiple features and the mass flow rate to be measured using traditional analytical methods. Therefore, a suitable data-driven model is needed to solve this problem. Due to the excellent processing ability of CNN for multi-dimensional features and the temporal memory advantages of LSTM, a data-driven model based on the CNN-LSTM hybrid network is developed. The structure of the model is shown in Fig. 3.
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Fig. 3. Structure of the CNN-LSTM model.

First, the local sensing characteristics of the CNN are used to reduce large-scale computation due to the multi-dimensional inputs. It is precisely because of this property of the CNN that it is crucial to set the appropriate number of network layers. If the number of network layers is too few, the CNN cannot sufficiently learn the correlations among the input data. Conversely, if the number of network layers is too large, it may lead to difficulties in the CNN convergence. Therefore, it is necessary to reasonably set the network layers of the CNN based on the actual input data. The optimized structure of the CNN, which consists of two convolutional layers, two max-pooling layers, and one fully connected layer, is determined through trial and error. The convolutional layer performs the convolution operation on the input data to generate the feature map. The equation for the convolutional layer is as follows: 
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where k is the layer number, 
[image: image44.wmf]k

j

y

 represents the output value of the j-th feature map of the k-th layer, 
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[image: image46.wmf]k

ij

u

 and 
[image: image47.wmf]k

j

b

 are the convolution kernel and biases, respectively. The star sign * represents the convolution operation, f(•) stands for the activation function. The commonly used activation functions are the Sigmoid function and the Relu function. In this study, the Relu function is utilized in view of its fast convergence speed and the capability to avoid gradient vanishing [27].
The convolutional layer is usually followed by a max-pooling layer [28]. The max-pooling layer is mainly used to reduce the dimensionality of feature maps, thus decreasing the computational cost of convolution operations and avoiding over-fitting. After performing two convolution and max-pooling operations, the feature map is flattened into a vector by a fully connected layer. This vector is used as input to the LSTM layer.

In order to sufficiently learn the temporal dependencies from the input data and consider the computational cost of the model (due to the complex structure of the LSTM network), three LSTM layers are used through trial and error. The LSTM network is a modified recurrent neural network (RNN) that overcomes the problem of gradient disappearance in traditional RNN training [29]. The cell states and gate structures are the core of the LSTM. The cell states are used to convey information. The gate structures are employed to control the deletion or addition of cell state information. An LSTM unit contains three types of gate structure: the forgetting gate, the input gate, and the output gate [30]. In the first stage, the forgetting gate plays a crucial role in determining the information that needs to be discarded from the cell state. This process can be expressed as:
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where ft is the forgetting gate, ht-1 represents the output of the hidden Layer at time (t‒1), xt is the current input data. Wf and bf represent the weight matrix and bias, respectively, and σ stands for the sigmoid activation function.

The second stage is the input gate, which is used to update the cell state. This process can be described as:
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Combining Eqs. (7) and (8), the current state of the cell is obtained:
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where it is the input gate, 
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 represents the candidate memory, Ct is the long-term memory. Wi and WC are the weight matrix. bi and bC represent the bias.

The last stage is the output gate, which determines the output information of the cell. The equations are as follows:
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where ot is the output gate, Wo and bo represent the weight matrix and bias, respectively.

In addition, each LSTM layer is followed by a dropout layer to avoid over-fitting. Finally, the predicted results are output through the fully connected layer.

EXPERIMENTAL RESULTS AND DISCUSSION

Experimental Setup and Test Conditions

A series of experiments was carried out on a test rig with square-shaped pipe sections, as shown in Fig. 4. The inner side width of the square-shaped pipe sections is 54 mm. A suction equipment was connected to the pipeline to provide a stable airflow. Variations in the solids velocity were achieved by regulating the power of the suction equipment. A screw feeder was used to feed solids into the pipe. The mass flow rate of solids was adjusted by controlling the solids discharge rate of the screw feeder using an embedded electronic system. Silica sands with a particle size range of 77–321 μm (measured by a commercial laser particle size analyzer, OMEC LS-POP9) were taken as experimental solids. All the signals from the acoustic and electrostatic sensors were sampled at a frequency of 30 kHz, while the outputs from the capacitive sensors were sampled at 600 Hz due to the operating bandwidth of the signal conditioning circuit. During the experiment, the ambient temperature was about 12℃, and the relative humidity was about 65%.

In order to train and evaluate the data-driven model, experimental tests were conducted to collect data under a range of conditions in both horizontal and vertical pipe orientations. A total of 49 test conditions were created, as shown in Table Ⅱ. The solids velocity and the mass flow rate of solids were adjusted from 11 m/s to 23 m/s and 8 kg/h to 26 kg/h, respectively. For each combination of the solids velocity and the mass flow rate of solids, the data were sampled for 12 s. Data from nine test conditions (V1M1, V2M2, V3M3, V4M4, V5M5, V6M6, V7M7, V1M7, and V7M1, as shown in green text in Table Ⅱ) were used as the unseen conditions to evaluate the data-driven model. The data obtained from the remaining test conditions were used for the training of the model. It is worth noting that the test conditions include four combinations with apparent differences, namely V1M1 (the lowest solids velocity of 11 m/s and the lowest mass flow rate of 8 kg/h), V7M7 (the highest solids velocity of 23 m/s and the highest mass flow rate of 26 kg/h), V1M7 (the lowest solids velocity of 11 m/s and the highest mass flow rate of 26 kg/h), and V7M1 (the highest solids velocity of 23 m/s and the lowest mass flow rate of 8 kg/h). These four test conditions are beyond the range of the training set. The flow regimes for the four unseen conditions may be similar in the vertical pipe orientation, but the difference is evident in the horizontal pipe orientation. When the solids velocity is low, the distribution of solids in the horizontal pipe is inhomogeneous, with smaller solids flowing above the pipe and larger solids moving slowly along the bottom of the pipe, forming a stratified flow. Therefore, choosing these four unseen test conditions is more favorable for evaluating the generalization ability of the data-driven model.
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Fig. 4. Schematic of the square-shaped pipe test rig.

TABLE II  

TEST CONDITIONS 
	Mass flow rate (kg/h)
	Solids velocity (m/s)

	
	V1=11
	V2=13
	V3=15
	V4=17
	V5=19
	V6=21
	V7=23

	M1=8
	V1M1
	V2M1
	V3M1
	V4M1
	V5M1
	V6M1
	V7M1

	M2=11
	V1M2
	V2M2
	V3M2
	V4M2
	V5M2
	V6M2
	V7M2

	M3=14
	V1M3
	V2M3
	V3M3
	V4M3
	V5M3
	V6M3
	V7M3

	M4=17
	V1M4
	V2M4
	V3M4
	V4M4
	V5M4
	V6M4
	V7M4

	M5=20
	V1M5
	V2M5
	V3M5
	V4M5
	V5M5
	V6M5
	V7M5

	M6=23
	V1M6
	V2M6
	V3M6
	V4M6
	V5M6
	V6M6
	V7M6

	M7=26
	V1M7
	V2M7
	V3M7
	V4M7
	V5M7
	V6M7
	V7M7


Analysis of Sensor Outputs

The outputs from the electrostatic sensors reflect the amount of charge carried by solids. The relationship between the RMS amplitude of electrostatic signals and the mass flow rate of solids at different solid velocities for different pipe orientations is shown in Figs. 5 and 6, respectively. The results show that the RMS amplitudes of the outputs from the electrostatic sensors increase nonlinearly with the increase of the mass flow rate of solids and the velocity of solids. The RMS amplitude of the output from the electrode depends on its position on the pipe and the orientation of the pipe. Due to the effect of gravity of solids, a large number of solids concentrate at the bottom of the pipe in the horizontal pipe orientation. Therefore, the RMS amplitude of the electrode at the bottom of the pipe is significantly greater than that of the others, as shown in Fig. 7. The signal from the top sensor has a lower RMS amplitude than those at the front and the back due to the lower concentration of solids at the top of the pipe. Nevertheless, the RMS amplitudes of these electrodes are very similar at low mass flow rates due to the fully suspended flow regime. Fig. 8 shows the RMS amplitudes of the electrodes at different positions in the vertical pipe orientation. Due to the centrifugal force at the upstream bend, more solids are accumulated in the right region of the pipe, resulting in a slightly higher RMS magnitude for the right electrode. However, the RMS amplitudes of the front, back, and left electrodes are close to each other.
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Fig. 5. RMS amplitude of the signal from the strip-shaped electrostatic sensor E1a on the horizontal pipe.
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Fig. 6. RMS amplitude of the signal from the strip-shaped electrostatic sensor E1a on the vertical pipe.
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Fig. 7. RMS amplitudes of the signals from the strip-shaped electrostatic sensors E1a-E4a with a solid velocity of 17 m/s on the horizontal pipe.
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Fig. 8. RMS amplitudes of the signals from the strip-shaped electrostatic sensors E1a-E4a with a solid velocity of 17 m/s on the vertical pipe.

​The changes in the mass flow rate of solids also lead to variations in the volume concentration of solids. The higher the volume concentration of solids, the larger the output amplitude of the capacitive sensor. Therefore, the amplitude variations of the outputs from the capacitive sensors (compared to when there is only airflow in the pipeline) are utilized to determine the volume concentration of solids [31]. The relationship between the amplitude variations and the volume concentration of solids for different pipe orientations is shown in Figs. 9 and 10, respectively. It can be seen that the amplitude variations of the output from the capacitive sensor at different locations are different, which are also due to the inhomogeneous flow regime leading to an inhomogeneous solid concentration distribution.
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Fig. 9. Amplitude variations of the outputs from the capacitive sensors on the horizontal pipe.
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Fig. 10. Amplitude variations of the outputs from the capacitive sensors on the vertical pipe.
The acoustic sensors are used to measure the sounds generated in the gas-solid two-phase flow in the pipe. The acoustic waves may arise from solid-solid or solid-wall frictions and collisions, as well as from air turbulence. However, due to the tiny particle size and the finite volume fraction of solids, the sounds produced by solid-solid or solid-wall interactions are quite low. According to the masking effect of acoustic waves [32], the sounds generated by solids motion are almost covered by the aerodynamic sound. Therefore, the acoustic signal measured by the acoustic sensor is dominated by the aerodynamic sound. The variations of the aerodynamic sound with the mass flow rate of solids for different pipe orientations are shown in Figs. 11 and 12, respectively. The results obtained show that the magnitudes of the aerodynamic sound decrease as the mass flow rate of solids increases. The attenuation of the aerodynamic sound indicates that the presence of solids increases the frictional resistance and local resistance to the airflow during the flow, resulting in more flow loss of the airflow. It is worth noting that the magnitude of the attenuation of aerodynamic sound is also related to the flow regime of the gas-solid two-phase flow. As the mass flow rate of solids increases, the flow regime of the gas-solid two-phase flow in the horizontal pipe orientation approaches a stratified flow, where the concentration of solids is higher at the bottom of the pipe and lower at the top. As shown in Fig. 11, it is evident that the amplitude decay of the bottom acoustic signal is the most significant, while that of the top acoustic signal is the least. However, the amplitude of the acoustic signal to the right of the vertical pipe orientation is more attenuated due to the higher concentration of solids in the region to the right of the pipe, as shown in Fig. 12. The amplitudes of the acoustic signals on the front, back, and left sides of the pipe are very similar.
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Fig. 11. RMS amplitude of the acoustic signal with a solid velocity of 17 m/s on the horizontal pipe.
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Fig. 12. RMS amplitude of the acoustic signal with a solid velocity of 17 m/s on the vertical pipe.
Implementation and Training of Data-Driven Models

A data-driven model based on the CNN-LSTM hybrid network (see Section II-E) is used to process a range of feature parameters obtained from the analyses of the outputs of multiple sensors, including solids velocity, volume concentration, and selected statistical features. Since the solids velocity is directly proportional to the mass flow rate of solids [5], it plays an important role in model training and applications. The selected statistical features based on the MRMR algorithm (see Section II-D) are shown in Table III. Due to the different measurement principles of each type of sensor, the waveform variations of the sensor signals are different, resulting in different features selected for each type of sensor. The reason for selecting these statistical features is that they reflect more or less the variations in the mass flow rate of solids. For instance, the RMS value of the electrostatic signal represents the amount of charge carried on solid particles. The RMS value of the capacitance signal represents the changes in dielectric properties inside the pipeline. The RMS value of the acoustic signal reflects the changes in sound generated due to the movement of the flow in the pipeline. For this reason, the RMS values of all signals from the three types of sensors are closely related to the mass flow rate and are hence selected as input features. The unselected features, such as standard deviation (σ) and the entropy (Ent), which represent the degree of dispersion of the sensor data, have a relatively low correlation with the mass flow rate of solids. 
It is well known that the prediction accuracy of data-driven models heavily depends on the number of samples used for model training. Therefore, a smaller window size is used to extract the features from the time series data collected by the sensors to obtain more samples. The total recording time of the data for each test condition is 360 s, which allows the generation of 3000 samples using a window size of 0.12 s. It should be noted that the window size cannot be too small. Otherwise, slight variations in the sensor signals will cause the extracted features to fluctuate significantly, thus negatively affecting the predictions of the models. 

In addition to considering the number of samples fed into the model, there are also some structural parameters and training parameters that need to be set before the model is trained. Through trial and error, the optimized structural parameters and training parameters adopted by the CNN-LSTM model are shown in Table Ⅳ and Table Ⅴ, respectively. Moreover, the performance of this model is compared with other data-driven models, including back-propagation artificial neural network (BP-ANN), support vector machine (SVM), CNN, and LSTM. The BP-ANN model is selected due to its strong nonlinear mapping capability and low computational complexity. 
Table III

FEATURES SELECTED BY MRMR

	Sensor
	Selected features

	Acoustic sensors
	λ   RMSf    CKur

	Capacitive sensors
	RMSt   Ap    RMStf

	Electrostatic sensors
	RMSt   λ    RMStf 


Table Ⅳ
OPTIMIZED STRUCTURAL PARAMETERS OF THE CNN-LSTM MODEL

	Layer (type)
	Structural parameters

	Conv1D
	Filters=64, Kernel size=4, Stride=2

	MaxPooling1D
	Kernel size=5, Stride=1

	Conv1D
	Filters=32, Kernel size=3, Stride=2

	MaxPooling1D
	Kernel size=5, Stride=1

	Fully connected 
	Output size=100

	LSTM
	Hidden units=150

	Dropout
	Dropout ratio=0.2

	LSTM
	Hidden units=150

	Dropout
	Dropout ratio=0.2

	LSTM
	Hidden units=150

	Dropout
	Dropout ratio=0.2

	Fully connected 
	Output size=1


Table Ⅴ  

OPTIMIZED TRAINING PARAMETERS OF THE CNN-LSTM MODEL

	Training parameters
	Value

	Optimizer
	Adam

	Batch size
	30

	Momentum
	0.9

	Max epochs
	100

	Initial learning rate
	0.005


Comparison of Prediction Performance Between Single-Sensor and Multi-Sensor Fusion Models
In order to validate the superiority of the proposed multi-sensor fusion-based measurement model, its performance is compared with that of the single-sensor measurement model. Assume that the average loss 
[image: image64.wmf]L

 of the model training is


[image: image65.wmf](

)

å

=

-

=

n

i

i

i

y

y

n

L

1

2

1

&

               (12)

where yi represents the actual value, ẏi is the predicted value and n is the number of samples.

The average losses for training the single-sensor and multi-sensor fusion models are shown in Fig. 13(a). As can be seen from Fig. 13(a), the average loss of the multi-sensor model decreases faster than that of the single-sensor model before 15 iterations, and hence the multi-sensor model converges faster. The results show that multi-sensor fusion is capable of improving the predictive performance of the model. Moreover, it can be found that the acoustic sensors have the largest average loss and the slowest convergence rate, while the capacitive sensors have the smallest average loss and the fastest convergence rate. This indicates that the capacitive sensors play a dominant role in the multi-sensor fusion model, while the acoustic sensors have the smallest contributions. However, the acoustic sensors having the largest average loss does not mean that they are redundant. As shown in Fig. 13(b), the multi-sensor fusion model converges faster than the model combining capacitive and electrostatic sensors only.
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Fig. 13. Comparison of the average loss of training. (a) between single-sensor and multi-sensor fusion models. (b) between capacitive-electrostatic sensor fusion and multi-sensor fusion models.
Mass Flow Rate Measurement Under Horizontal Pipe Orientation

This paper focuses on predicting the mass flow rate of solids under nine different test conditions (see Section III-A). The prediction results of the BP-ANN, SVM, CNN, LSTM, and CNN-LSTM models in the horizontal pipe orientation are shown in Fig. 14. It is obvious that the predicted results of the CNN-LSTM model are closest to the actual mass flow rate. The relative errors of the prediction results of the BP-ANN, SVM, CNN, LSTM, and CNN-LSTM models are within ±11%, ±8%, ±5%, ±3%, and ±1%, respectively, as shown in Fig. 15. The above results show that the CNN and LSTM models perform better than the BP-ANN and SVM models in terms of predictive performance. This indicates that CNN and LSTM are more capable of handling high-dimensional nonlinear feature data. Compared to the CNN and LSTM models, the CNN-LSTM hybrid model has higher prediction accuracy. This indicates that the combination of CNN and LSTM has a stronger feature learning capability.
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Fig. 14. Predicted mass flow rate of solids using different models on the horizontal pipe.
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Fig. 15. Relative error of different models on the horizontal pipe.
Mass Flow Rate Measurement Under Vertical Pipe Orientation

Fig. 16 shows the prediction results of the BP-ANN, SVM, CNN, LSTM, and CNN-LSTM models in the vertical pipe orientation. The relative errors of these models are within ±10% (BP-ANN), ±7% (SVM), ±5% (CNN), ±3% (LSTM), and ±1% (CNN-LSTM), respectively, as shown in Fig. 17. The results also show that the prediction accuracy of the CNN-LSTM model is higher than that of the other models. Moreover, the relative errors predicted by the model in the vertical pipe orientation are similar to those in the horizontal pipe orientation. This suggests that the predictive performance of the model remains unaffected by the orientation of the pipe, demonstrating its exceptional level of generalization capability.
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Fig. 16. Predicted mass flow rate of solids using different models on the vertical pipe.
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Fig. 17. Relative error of different models on the vertical pipe.
Comparison of Data-Driven Models

According to the prediction results obtained from Sections Ⅲ-E and F, the mean absolute error is used to compare the predictive performance between the BP-ANN, SVM, CNN, LSTM, and CNN-LSTM models, as shown in Fig. 18. The BP-ANN model has the worst predictive performance in both horizontal and vertical pipe orientations. Since the initial weights of the network are randomly generated during the training process, it is susceptible to issues such as overfitting or under-learning, which results in low prediction accuracy of the model. The SVM model achieves better prediction results than the BP-ANN model, which benefits from the powerful nonlinear processing capability of the kernel function. The SVM model uses a kernel function to map nonlinear samples from a low-dimensional space to a high-dimensional space, making the samples linearly separable. However, the SVM model still exhibits a considerable mean absolute error (see Fig. 18), indicating that it struggles to map the complex nonlinear relationships between the multiple features and the mass flow rate of solids due to its shallow architecture. Hence, this paper introduces deep network models, CNN and LSTM, which are known for their strong feature learning capabilities. It can be seen that the prediction accuracy of the CNN model is significantly higher than that of the SVM model, which is due to its powerful local sensing capability to represent nonlinear multi-dimensional features more accurately. Moreover, thanks to its parameter-sharing mechanism, the computational complexity of the model is considerably reduced. The predictive performance of the LSTM model is better than that of the CNN model because it can remember the long-term information of feature sequences. However, the computational complexity is higher than the CNN model due to its complex network structure. Finally, the CNN-LSTM hybrid network model achieves better prediction results by leveraging the respective strengths of CNN and LSTM networks. In addition, as shown in Fig. 18, the prediction accuracy of the models in the vertical pipe orientation is slightly better than that in the horizontal pipe orientation, since the flow regime of the gas-solid two-phase flow is more uniform in the vertical pipe orientation, leading to fewer data fluctuations.
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Fig. 18. Comparison of mean absolute errors for the data-driven models.
CONCLUSION

A method for measuring the mass flow rate of solids in square-shaped pneumatic conveying pipelines has been proposed using multi-sensor fusion and CNN-LSTM modelling.The effectiveness of this method has been evaluated under a range of experimental conditions, with solids velocity ranging from 11 to 23 m/s and the mass flow rate of solids from 8 to 26 kg/h. The relative error of the predicted mass flow rate of solids with the CNN-LSTM model is within ±1% throughout the range of solids mass flow rate. The results have demonstrated that the combination of multi-sensor fusion and CNN-LSTM modelling is an effective approach to measuring the mass flow rate of solids in a square-shaped pipe. Future work will evaluate the proposed method under industrial conditions.
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