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ABSTRACT
This studyproposes a double slidingmode control-augmentedU-control (UDSM-control)method for
a class of single-input single-output nonlinear systems with internal uncertain parameters, model
mismatching and external system noise/disturbance to improve robustness in nonlinear dynamic
inversion in the U-control system design. For the configuration, the UDSM-control system takes up
(1) a double sliding mode dynamic inverter to cancel nonlinearities and dynamics of the plant, (2)
a linear invariant controller, the other dynamic inverter of the specified whole desired system per-
formance, so that the whole system dynamic inversion is split into two designs in double feedback
loops. For using the framework, this study analyses the associated properties on (1) global stability,
(2) double sliding from a switching control driving the states to a sliding band and an equivalent
control driving the states to a sliding line and (3) robustness against uncertainties/disturbances and
a potential data-driven prototype. To validate the developed control system, it selects bench test
examples for simulation studies using Matlab/Simulink, which demonstrates the UDSM-control in
terms of accuracy, tracking, and robustness. The tests also present a step-by-step design procedure
for potential applications.
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1. Introduction

Regarding the control system analysis and design,
almost all designs are involvedwith inversion (dynamic
inversion (DI)) for determining control input once a
specified control performance is formulated, as a func-
tion of the control input, within a specified control
system structure. Therefore, DI, in one way or other, is
one of the kernel issues, particularly the DI in terms of
nonlinear expressions (Slotine & Li, 1991) in the con-
trol system design. The other issue with DI is whether
it could be decomposed into a few simpleDIs to reduce
the computational complexity and remove unneces-
sary repeatability, such as inmost of the classical linear
controller designs, the whole DI for controller output
in terms of Laplace transform is a product of two DIs
(plant transfer function DImultiplied by a closed-loop
transfer function DI). For those designed nonlinear
controllers, it is not such easy to split systematically
the whole DI to resolve the control input (controller
outputs).

CONTACT Quanmin Zhu Ruobing2.Li@live.uwe.ac.uk Department of Engineering Design and Mathematics, University of the West of England,
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DI, particularly nonlinear DI (NDI), approach has
widely used in the flight control system design (Miller,
2011). Many approaches have taken to plant nonlin-
earity cancellation into a controllable equivalent linear
dynamic by feedback linearisations (Horn, 2019; X.
Wang et al., 2019), and then design the correspond-
ing control system. Although the DI concept provides
concise control system design frameworks, the per-
fectly matched idealised assumption of the model was
a challenge for applications and academic research.
Consequently, various methods have been involved to
improve the robustness of DI. Adaptive approaches
(Miller, 2011) are definite options of the solutions, but
our study is not interested in this. Accordingly, this
study will focus on the robust approaches in dealing
withmodel uncertainties/disturbance and the induced
problems in the formulations of the NDI-based con-
trol system design. Some of the developed approaches,
representatively NDI approaches (Das et al., 2009),
have used two steps of design (1) taking feedback
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linearisation to transform the nonlinear state equa-
tions into an equivalent linear dynamic and (2) using
linear control approaches to design the whole con-
trol systems. The robustness in NDI is not directly
considered by the approaches, but it is alternatively
accommodated in the external control loop design, in
which the uncertainties might propagate to increase
additional efforts in control. Incremental NDI (INDI)
(Sieberling et al., 2010; Tarokh, 2017) is a technique
that does not use required input to control the sys-
tem. Alternatively, it takes the required change in the
input. Therefore, the INDI only uses a small part of the
model inDI, so that it can cope better withmodel inac-
curacies and more robust than NDI. Two commonly
shared characteristics with NDI and INDI are feed-
back linearisation and limited with affine nonlinear
models, respectively. Sliding mode control-based NDI
(SMCNDI) (Yang et al., 2014) uses two loops: an inner
loop for NDI with typical SMC and an external loop
for assigning the control system performance in posi-
tioning and tracking. The unmatched model uncer-
tainty is accommodated in the inner loop. The affine
nonlinear model (liner in control) was assumed in
designing equivalent control in the SMCNDI. Eigen-
value assignment-based NDI (Y. C. Wang et al., 2015)
is not necessary to convert the nonlinear state-space
models into linear equivalent expressions by feedback
linearisation before designing the control systems. The
approach also can cope with non-affine and non-
minimum phase systems, if the eigenvalues of error
dynamics are properly selected to keep the desired
dynamics stable. However, it is still an approach can-
celling nonlinearities instead of cancelling dynamics
and nonlinearities.

Fom the NDI control system design methods, U-
model-based control (Zhang, Zhu et al., 2020; Zhu
& Guo, 2002), U-control in short, has been pro-
posed to cover the two essential tasks: establish-
ing a universal NDI platform to remove the pre-
requirement of the state feedback linearisation and
configuring the control system framework to decom-
pose the whole NDI for the solution of controller
output into two parallel DIs, that is DI of control
system performance to form an external linear feed-
back control loop and DI of the plant to cancel
both the plant dynamics and nonlinearities into a
unite constant. There have been two-stage develop-
ments with U-control. Stage 1 – model-matched con-
trol (focus on dynamic model inversion and control

system configuration) integrates with classical control
approaches to expand the feasibility and effectiveness
dealingwith nonlinear dynamics such asU-pole place-
ment control (Zhu & Guo, 2002), U-internal model
control (Shafiq & Haseebuddin, 2005), U-general pre-
dictive control (Du et al., 2012), U-model enhanced
Smith predictive control (Geng et al., 2019), U-neural
network-based control (Zhu et al., 2019), U-model-
based Multi-Input Multi-Output (MIMO) control of
unmanned marine robotics (Hussain et al., 2019). A
recent SI, from complexity to simplicity in the U-
model enhanced control system design, covers more
U-control studies (Zhu et al., 2020). U-control is com-
plemented to many existing control system design
approaches.

The model-matched U-control is a foundation;
however, the model-matched assumption should be
removed for academic research challenges and real
applications, so that robust and/or adaptive control
should take internal model mismatching (structural
and parametric uncertainties) and external distur-
bance and taking measuring noise into considera-
tion in the control system design. With the justifica-
tions aforementioned, Stage 2 – U-control has taken
model mismatched (focus on robust DI and control
system configuration) into consideration in such con-
trol system designs. Here some of the representative
approaches are explained for reference such as New-
ton Raphson online iterative root solving algorithm
for NDI (Zhu & Guo, 2002), neural network learn-
ing for NDI (Hussain et al., 2019), adaptive NDI
(Zhu et al., 2018), extended state observer-based NDI
(Wei et al., 2020). The approaches have relied on the
small gain theorem in the aspect of robustness. Surely
more research is needed for NDI (probably, nonlin-
ear dynamic cancellation (NDC) ismore proper) while
removing both nonlinearities and dynamics of a plant
simultaneously in conjunction with U-control should
be explored to give more effective options for a wide
range of nonlinear control system designs, which the
U-control is a scheme of seamless supplement tomany
existing control methods.

From the above review, some aspects that could be
further improved inNDI-based control system config-
uration and NDI-solving algorithms are as follows:

(1) In most of the NDI control system designs, the
models used have been affined in the controller
input, which, because of nonlinear control input,
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is still a linear inversion problem. Nonaffine plant
models should have been properly accommo-
dated in NDI for research and applications.

(2) In the case of the model matched and the other
mild conditions satisfied, feedback linearisation
might not be needed.Direct dynamic/nonlinearity
cancellation could be resolved in an open-loop
approach within an external feedback control
loop.

(3) For some state space models, such as rational
state space models (control input could be in
the denominator), feedback linearisation is prob-
ably more challenging than NDI (Zhu et al.,
2018).

(4) In the case of themodelmatched,DI could be gen-
erally treated as a polynomial root-solving process
for polynomial models, rational (total nonlinear)
models (Zhu et al., 2015) and state-space models.

(5) Regarding robustDI, slidingmode control (SMC)-
based inverters should be further studied, which
should have low sensitivity to plant parameter
uncertainty and promising strength against exter-
nal disturbance and fast convergence.

1.1. Themajor contributions of the study

To deal with systems subject to structural/parametric
uncertainties due to the modelling error, and external
noise/disturbances, SMC has proved/demonstrated its
robustness in performance and conciseness in design
(Yan et al., 2017). SMC has grown rapidly as a control
in comparison with other robust control strategies due
to the distinguishing features such as insensitiveness
to matched uncertainties, reduced-order sliding mode
(SM) equations, zero error convergence of the closed-
loop system and it offers a nonlinear control. This
study aims to use basic SMC to enhance NDI/NDC to
establish a general robust U-control framework. The
main contributions are listed as follows:

(1) Propose a double sliding mode control (DSMC)
scheme to establish a robust dynamic inverter,
to cancel the plant nonlinearities and dynam-
ics, which removes the request of plant nominal
model and eliminates chattering in the classi-
cal SMC design. Lyapunov stability is used for
determining the switching control and equiva-
lent control in the sliding mode inverter (SMI).
In essence, this provides a data-driven prototype

control without borrowing adaptive and iterative
functions.

(2) Establish a UDSM-control system design plat-
form: in brief, it takes two separate DIs in the
whole control system design. For a specified lin-
ear system performance (using damping ratio and
undamped natural frequency), design a close loop
with an invariant controller to implement; the
invariant controller is the inverse of the specified
system performance. The design is independent
of the plant and provides the desired state vector
for the reference of the DSMC operation in the
inner loop. Secondly, design an inner loop with
DSMC to achieve robust plant DI.

(3) Present bench tests with computational experi-
ments (Matlab/Simulink based) to validate the
analytical results and function block connec-
tions. Also, the tests provide a user-transparent
design procedure for future research expansion
and applications.

Section 2 explains the principles and framework
of the model-matched U-control in stage 1 U-
control, which lays a foundation to develop a model-
mismatched U-control. Section 3 proposes a double
SM controller to act as a plant dynamic robust inverter
to cancel nonlinearities and dynamics. Then this
makes the stage 1 U-control framework applicable to
specify the whole system performance. The section
also analyses the associated properties with the second
stage U-control. Section 4 conducts the bench tests
to validate the derived results with Matlab/Simulink.
Section 5 summarises the study with findings and
observations and gives a view of potential research
issues.

2. Model matched U-control

The U-model-based control involves two aspects: U-
model and U-control system design.

2.1. U-models

A general single-input single-output U-polynomial-
model of P (Zhu et al., 2018), mapping u → y, with
a triplet of (y(t), u(t),α(t)), y(t) ∈ R,u(t) ∈ R, α(t) ∈
R
J for the output, input and time-varying parame-

ter vector, respectively, at time t ∈ R
+, is defined for
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describing dynamic plants as

y(M) = ATU =
∑J

j=0
αjfj(u(N)), M ≥ N (2.1)

where y(M) and u(N) are theMth andNth order deriva-
tives of the plant output y and input u, respectively.
J ∈ R

+ is the number of the polynomial terms. The
time-varying parameter αj ∈ R is an absorbing func-
tion to include the other outputs like [y(M−1), . . . , y] ∈
R
M and inputs [u(N−1), . . . , u] ∈ R

N . fj(∗) is a func-
tion of the input u(N). Vectors AT = [α0, . . . ,αJ] and
U = [f0, . . . , fJ]T over a field F, F× F → F, are the
operators mapping the underlying input, output and
parameters into the condensed expressions.

To illustrate the U-representation of classical mod-
els, consider a general polynomial model of

ÿ = (1 − e−sin2(y))ẏ + (1 + y2) sin(u)

+ (1 + ẏ2)u2 + y + (y + ẏ2)u3 (2.2)

Its U-model is transformed with the U-mappings ofA
and U into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ÿ = α0f0(u) + α1f1(u) + α2f2(u)2 + α3f3(u)3

α0 = (1 − e−sin2(y))ẏ + y, f0(u0) = 1

α1 = 1 + y2, f1(u) = sin(u)

α2 = 1 + ẏ2, f2(u2) = u2

α3 = y + ẏ2, f3(u3) = u3

(2.3)

Remark 1: U-model represents the existing model
sets with a directly control-oriented structure. U-
polynomial is the foundation to expand the whole
U-model set. For the representation to classical lin-
ear models, assign J = 1, functions f0(u) = 1, f1(u) =
u, then the linear U-model takes the following form
y(M) = α0 + α1u(N), M ≥ N (2.4)

For representing the conventional state spacemodel
set, the U-state space model set expands the single-
layer U-polynomial model (2.11) into multi-layer sys-
tems of polynomials (Geng et al., 2019).

For representing the conventional rational (total
nonlinear) model set (Zhu et al., 2015), U-polynomial
is expanded into a ratio of U-numerator polynomial
and U-denominator polynomial (Zhu et al., 2018).

2.2. U-model-based dynamic inversion

Let U-model P, in the form of a polynomial, be a map-
ping/function, u → y. The U-model-based dynamic
inversion (UM-DI) algorithm, that is the solution of
its inverse P−1, is to obtain the input u by solving (2.1)
for a given output,

P−1 ⇔ u(N) ∈ y(M) −
∑J

j=0
αjfj(u(N)j) = 0,

M ≥ N (2.5)

If solution exist, the systems must be bounded input
and bounded output (BIBO) stable and no unsta-
ble zero dynamic (non-minimum phase). The solu-
tion platform has been expanded including the root
solving algorithms for continuous/discrete time, lin-
ear/nonlinear, polynomial/state spacemodels (Li et al.,
2020).

Remark 2: Compared with the model-matched DI,
most of the other DI approaches use state or output
feedback linearisation, which only cancels nonlineari-
ties. The UM-DI, in the open-loop approach, directly
works out the solutions/control input by solving U-
model polynomial equations with specified desired
outputs, which cancels nonlinearities and dynamics. It
is more concise and generally applicable.

2.3. U-control

Let P be a general representation in any model of lin-
ear/nonlinear and polynomial/state-space models for
dynamic plants. Assumingly, the set of the plants has
most of the properties as those claimed in the other
representative works (Isidori, 2013). Accordingly,

(1) the model inverse P−1 exists;
(2) Lipschitz continuity is satisfied, the model P is a

mapping/function, u → y, and its inverse P−1 are
diffeomorphic and globally uniformly Lipschitz in
R; that is,

||P(u1) − P(u2)|| ≤ γ1P||u1 − u2||,
∀u1, u2 ∈ R

||P−1(u1) − P−1(u2)|| ≤ γ2P−1||u1 − u2||,
∀u1, u2 ∈ R

where u1, u2 are the inputs, while P is in the form of
a polynomial model and replaced with states x1, x2,
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while P is in the form of state space equation, γ1 and
γ2 are the Lipschitz coefficients.

The U-control system is functionally expressed as

∑
= (F , C(C1, P−1), P) ⇔

∑
= (F ,C1, Iip) (2.6)

where F is the U-control system structure, C(∗) is
a set to be designed controllers and Iip = P−1P is a
unit constant. Figure 1 shows the model-matched U-
control system framework (Zhang, Zhu et al., 2020),
in which C1 is the linear invariant controller to be
designed and P−1 is the inverter of the controlled plant
P to be designed. It is noted that the U-control frame-
work is applied to linear and nonlinear plants, while
the dynamic inverse P−1 exists.

In general, the U-control system design procedure
has two steps:

(1) Design dynamic inverter P−1 to achieve Iip =
P−1P = 1. This gives

∑ = (F ,C1).
(2) Design invariant controller C1 under

∑ =
(F ,C1, Iip) with a specified closed loop linear
transfer function G. This can be achieved in
a typical formulation of linear control systems.
For example, consider a second-order linear sys-
tem, let the desired closed-loop transfer func-
tion G = ω2

n
s2+2ωn+ω2

n
, where damping ratio and

undamped natural frequency ωn can specify the
system dynamic/steady-state response. As G =
C1

1+C1
, taking the inversion gives C1 = G

1−G .

Remark 3: Regarding the robustness in U-DI
for mismatched models, Newton–Raphson iterative,
adaptive neural network leaning and the direct
equation solution, it is noted that the small gain
theorem has been used to specify the robustness,
which is limited in a small range of uncertainty. To
increase the DI robustness, it is believed that the feed-
back control loop should be added to regulate the DI
errors properly.

3. Model-mismatched U-control

3.1. Control system structure

To accommodate mismatched plant model and exter-
nal disturbance, Figure 2 proposes a model-mis-
matched U-control system structure and is expressed
functionally as follows:∑

= (F , C(C1, P̂−1), P) ⇔
∑

= (F ,C1, Îip) (3.1)

where F is the U-control system structure, C(∗) is
a controller set to be designed, C1 is a linear invari-
ant controller to specify the external loop performance
and P̂−1 is a controller for DI with mismatched plant
model to achieve Îip = In which is a nth order identity
matrix.

From the feedback-based DI in the inner loop
shown in Figure 2, it is clear that the system output x is
dependent on P̂−1, P and xd. For convenience, let the
DI control system be

x = Ki(P̂−1, P, xd) (3.2)

where x is the output and xd is the desired reference.
The control objective is to achieve x = xd, by design-
ing an appropriate Ki(·) and P̂−1 for a given reference
signal xd. Accordingly, the inner loop has the property
of Îip = In, which is a nth order identity matrix.

Proposition: Îip = In → x − xd = 0n ⇔ x = xd.
Remark 4: To still achieve the similar control tar-

get, as described in stage 1 (modelmatchedU-control),
the critical technical challenge is how to obtain Îip =
In, t > t1. As SMC shows strong robustness in perfor-
mance, fast response and conciseness in design, this
study presents a scheme using SMC for DI called SMI.

Figure 2. Model mismatched U-control system framework.

Figure 1. Model matched U-control system framework.
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3.2. DSMC design procedure for DI

This section presents a scheme using SMC to derive
a robust dynamic inverter P̂−1 to achieve Îip = In,
t1 ≤ t. A widely used SMC approach (Yan et al., 2017)
is referred to formulate the dynamic inverter with u =
ueq + usw which is a prototype of combing equivalent
input ueq and switching input usw. Once the sliding
surface is determined, then the SMI can be obtained
in a revised SMC formulation. Accordingly, the study
proposes a DSMC method, a global SM band with
interval δ to drive errors into and remain in the stable
interval, a local SM line to attract the error within the
stable interval towards zero exponentially monotoni-
cally. Figure 3 (part of the figure fromYang et al., 2014)
shows the double sliding surface against the classical
one.

The DMSC design procedure is explained as fol-
lows.

(1) Design a global sliding surface Sg to specify the
considered system with a desired performance
once the system remains on the SM. Realistically,
a small interval (boundary) δ is assigned for the
distance to the classical sliding surface S. So Sg
presents a sliding band surface with thickness δ.

Let X = [x, ẋ . . . x(n−1)], then define an (n − 1)th
order of state tracking error vector

E = X − Xd = [e = x − xd ė = ẋ − ẋd · · ·

e(n−1) = x(n−1) − x(n−1)
d

]T
(3.3)

where x(i) and x(i)
d are the ith order derivatives of the

plant model state x1 and desired state xd, respectively.
Then set up a classical sliding surface function S (Yan
et al., 2017) in the form of

S = c1e + c2ė + · · · + cn−2e(n−2) + e(n−1) (3.4)

where the coefficient vector C = [
c1 c2 · · · cn−2

]
∈ R≥0 is chosen in terms of Hurwitz stable.

Then the global sliding surface with the boundary δ

in the SM interval is designed as

Sg = S + δ1, 0 ≤ |δ1| ≤ |δ| (3.5)

(1) Design a switching controller usw to drive the sys-
tem states to the sliding surface (interval/band) in
finite time and keep the system state motion on
the surface thereafter.

Assigning a Lyapunov function Vg = 1
2(Sg)

2 =
1
2(S + δ1)

2 and the corresponding derivative is given
by V̇g = ṠgSg = Ṡ(S + δ1). Let Ṡ = fg + usw, where fg
represents all the neglected bounded terms in a classi-
cal SMC design.

The derivative of the Lyapunov function gives

V̇g = Ṡ(S + δ1) = (fg + usw)(S + δ1) (3.6)

Figure 3. System states (Red for classical SMC and Red+ Blue for DSMC).
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To satisfy V̇g ≤ 0 for stability, choose

usw = −kgsgn(S + δ1) (3.7)

where kg ∈ R>0 > |fg | is a positive gain of the design
choice and sgn(∗) is the sign function.

(1) Design a local sliding surface Sl an equivalent
controller ueq with the condition of driving the
system statemotion towards Ṡl = 0 Sl = 0 asymp-
totically.

For the local sliding surface, assign it as the classical
Hurwitz stable manifold of (3.2), that is

Sl = S (3.8)

Assigning a Lyapunov function Vl = 1
2(S)

2 and the
corresponding derivative is given by V̇l = ṠS. Let

Ṡ = fl + ueq = k2S + ueq (3.9)

where fl represents all neglected bounded terms in a
classical SMC design. Let the matching condition of
fl = k2S be satisfied, where k2 is a bounded unknown
tangent factor of S. To derive the equivalent con-
troller ueq satisfying the Lyapunov stability conditions
of Vl ≥ 0 V̇l ≤ 0 , expand the derivative of the Lya-
punov function as

V̇l = ṠS = (fl + ueq)S = (k2S + ueq)S (3.10)

To satisfy V̇l ≤ 0, choose

ueq = −klS, kl ∈ R>0 > |k2| (3.11)

(1) Finally, the double SM controller is formulated as
u = ueq + usw

3.3. DMSC and U-control properties

P1: Theorem 1: Assume the plant is BIBO and
its inverse exists, the DSMC is globally stable and
make Îip = Ki(P̂−1, P) = 1, t1 ≤ t asymptotically. The
DSMC design procedure is a process of proof. The first
Lyapunov stability (Vg ≥ 0 V̇g ≤ 0) used is to force
the state vector X converge to the SM band Sg = S +
δ1, 0 ≤ |δ1| ≤ |δ| by switching control. The second
Lyapunov stability (Vl ≥ 0 V̇l ≤ 0) used is to force

the state vector X in the SM band converge asymptot-
ically to the final SM line Sl = S + δ1 = S, δ1 = 0 by
continuous equivalent control. Therefore, X − Xd =
0⇔ Îip = Ki(P̂−1, P) = 1.

Corollary: If Îip = Ki(P̂−1, P) = 1 asymptotically
and the linear invariant controller C1 is Hurwitz sta-
ble, the U-control system is also Hurwitz stable. This
is because G = C1

1+C1
.

P2: Robustness is related to kg ∈ R>0 > |fg | and
kl ∈ R>0 > |k2|, in which |fg | and |k2| give the bounds
of the robustness in the switching control and equiva-
lent control, respectively for the entire U-control sys-
tems.

P3: Sliding surface with the best-conditioned lin-
ear dynamics (Slotine & Li, 1991) can be selected with
the U-control framework, by assigning damping ratio
and undamped natural frequency within an external
feedback loop, as explained in Section 2.3.

P4: In essence, the DSMC is a prototype of data-
driven SMC to make the DI in the model free form.
There is no need for knowing plant model structure
and parameters under those commonly used assump-
tions with BIBO, inverse exit and plant dynamic
order known. Compared with conventional data-
driven approaches (Hou & Wang, 2013), the DSMC
is in a style of data-driven design/operation, but does
not require iterations to determine parameters. This
type of data-driven control dramatically reduces the
complexity in dealing with models in the SMC system
design, for example, those derivations of equivalent
control, which is effective for general variable struc-
ture systems. The bounds of |fg | and |k2| are necessary
known in advance. The gains can conservatively be
large enough to satisfy the conditions kg ∈ R>0 > |fg |
and kl ∈ R>0 > |k2|.

P5: Compared with classical SMC, the DSMC is (1)
not required to use a nominal model to design ueq;
(2) to remove chattering, the local SM Sl shares the
properties with low-pass filters (Slotine& Li, 1991); (3)
regarding classical SMC, in general, the small sliding
layer δ is for better control accuracy, for stimulating
chattering easily. Large δ reduces the chattering, but
increases steady-state errors possibly. The other fac-
tor is the gain associated with the switching control.
It is lager for more control accuracy and faster to the
sliding surface, but its amplitude is limited by the sat-
uration of system input, particularly in applications.
Both are normally selected by trial and error. For the
DSMC, both factors are also vital for the control system
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performance, but more relaxed in selection than those
with SMC.

P6: Compared with SMCNDI (Yang et al., 2014),
the DMSC includes the SMCNDI as it’s a special case
while using the nominal model to design equivalent
control.

P7: Compared with high gain control (HGC) (Lin,
2009), the DMSC includes HGC as it’s a special case
while assigning the sliding surface boundary |δ| >

max(|u|, |y|) and kl 	 0. The DMSC can achieve sim-
ilar results using lower gain of kl in conjunction with
kg .

P8: The UDSM-control could be used to facili-
tate the requirement on the time scale separation
(Chakrabortty & Arcak, 2009) in the control system
design because the framework separates the designs
of inner control loop (dynamic inverter) and outer
control loop (invariant controller).

4. Case studies

Two case studies are selected for demonstrating the
validity and comparisons of the derived procedure and
block function connections of the control system con-
figuration. The second purpose of the demonstrations
is to show the design procedures and knowhow for
the potential reference of applications and academic
research.

Plants: The two exemplary plants, expressed in

the model of Ẋ = F(X, u)
y = x1 + d(t) , are (1) second-order(

X = [
x1 x2

]T)
dynamics with an external dis-

turbance d(t) = 1 added at the outputs, (2) the

dynamic order = 2 known and all the state variables
accessible for the control system design, (3) BIBO and
dynamic inverse exit and (4) no pure time delay.

UDSM-control: Figure 4 shows the control system
structure to facilitate the explanation of the design pro-
cedure. For the two case studies, the design takes two
separate tasks: (1) designing the SMI with the inner
loop (x = Ki(P̂−1, P, xd)) to achieve Îip = I2 and (2)
designing the invariant controller with the external
loop to achieve the whole system performance. For
designing the SMI: Define a tracking error vector as

E = X − Xd = [
e1 = x1 − xd ė1 = ẋ1 − ẋd

]T
= [

e1 = x1 − xd1 ė1 = x2 − xd2
]T (4.1)

Then set up a classical sliding surface function S as

S = ce1 + ė1 (4.2)

where coefficient c = 20 is chosen in terms of the
Hurwitz stability criterion and a fast inner-loop con-
vergence speed.

With reference to Section 3.2, of the SMI, having
usw = −kgsgn(S + δ1) and ueq = −klS, this experi-
ment, by trial and error, assigns kg = 6 and
kl = 5. Consequently, the integrated controller of
the DSMC system is formulated as u = ueq + usw =
−6sgn(S + δ1) − 5S. Assign the sliding band bound-
ary thickness |δ| = 0.8.

For designing the second-order IC: Specify the
whole desired closed loop control system performance
with a linear second-order transfer function G =

Figure 4. UDSM-control system.
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C1
1+C1

= ω2
n

s2+2ωns+ω2
n
, where C1 is the invariant con-

troller. The damping ratio and undamped natural fre-
quency ωn can specify the system dynamic/steady-
state response. Consequently, taking the inversion of
G gives C1 = G

1−G = 1
s

ω2
n

s+2ωn
. Accordingly, the desired

states from the invariant controller are determined
with xd1 = 1

s
ω2
n

s+2ωn
, ẋd1 = xd2 = ω2

n
s+2ωn

.
The state space realisation of the invariant con-

troller, which could be used to accommodate future
expansion/configuration based on the state space
models, has the following expression

ẋd = Axd + Be
xd1 = Cxd

,A =
[
0 1
0 −2ωn

]
, B =

[
0
1

]
,

C = [
ω2
n 0

]
, e = r − y (4.3)

In addition, for the general case of designing the
nth order invariant controller, which requires the
nth order desired state vector while still keeping the
second-order performance, it suggests G = C1

1+C1
=∏n

i=3 pi∏n
i=3(s+pi)

ω2
n

s2+2ωns+ω2
n
, which all the extra poles can

be assigned with ∀piε
∏n

i=3(s + pi) : pi ≥ (3 ∼ 5)ωn.
The invariant controller can be still determined by
C1 = G

1−G .

4.1. Case 1 non-affine nonlinear plant

4.1.1. Plantmodel

ẋ1 = x2
ẋ2 = −0.6x2 − x1x2 − ux2 + sin(u) + 2u + u3

y = x1 + d(t)
(4.3)

where the external disturbance d(t) = 1 is added at the
outputs.

UDSM-control: The design takes two separate tasks:
(1) designing the SMI with the inner loop (x =
Ki(P̂−1, P, xd)) to achieve Îip = I2 and (2) design-
ing the invariant controller with the external loop to
achieve the whole system performance.

(1) Design of the SMI: Completed at the beginning
of the section, which is applicable for both case
studies.

(2) Design of the IC: Specify the whole desired con-
trol system performance with the linear second-
order transfer function G = ω2

n
s2+2ωns+ω2

n
, where

the damping ratio = 0.7 and undamped natural
frequency ωn = 5, which is a decayed oscilla-
tory response with zero steady-state error to step
reference input. This gives a reference to design
the invariant controller C1 under

∑ = (F ,C1).
As G = C1

1+C1
, taking the inversion givesC1 =

G
1−G = ω2

n
s2+2ωns

= 125
s2+7s . This sets up an external

unit feedback loop to achieve the desired sys-
tem performance and also provides two desired
states xd1 = 25

s+7
1
s , ẋd1 = xd2 = 25

s+7 for refer-
ence for the SMI.

4.1.2. Simulations
Figure 5 is a package to show the system output
response to a sequence of step references. Figure 6 is
a package to show the system output response to a
sinusoidal reference sin(0.3t).

4.2. Discussions on the simulated plots

This section presents the following understandings
from the inspection of the generated plots from the
computational experiments on the Simulink plat-
form.

(1) Dynamic and static targets are well obtained,
which are consistent with those analytically
designed.

(2) Control input (Figure 5(b)) is not zero in steady-
state; this is because the constant disturbance is
added at the system output.

(3) Robustness should be noted except the known
request of plant dynamic order; there is no knowl-
edge in using the plant model structure and
parameters in the DI and control system design.
Actually, this approach has model-free robust
control, which is even more favourably without
the need of iterative learning in disturbance esti-
mation and plant model identification.

(4) Even in the large sliding band boundary thickness
|δ| = 0.8, the system outputs still have reasonably
good accuracy while reducing the possibility of
chattering effect. This is because of the set-up of
the local SM and the continuous control within
the sliding band.

(5) The control system performance achieved with an
external closed loop can improve accuracy and
robustness. This configuration is better in these
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Figure 5. (a) Output response. (b) Control input. (c) System tracking error. Test with step reference inputs.
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Figure 6. (a) Output response. (b) Control input. (c) System tracking error. Test with sinusoidal reference inputs.
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aspects than those schemes using reference tra-
jectory generators in open loop (Ren et al., 2015;
Yang et al., 2014).

4.3. Case 2 rotary servo system having non-affine
uncertainties (Ren et al., 2015)

To further demonstrate the characteristics and per-
formance of the proposed DSMC, a rotary servo sys-
tem,with non-affineuncertainty termadded in control
input, was selectedwith computational experiments by
Matlab/Simulink, to compare those results obtained
using uncertainty and disturbance estimator-based
robust control (UDERC) (Ren et al., 2015).

Plant model: The following second-order nonlinear
dynamic model is referred for this servo system with a
non-affine uncertainty added at the control input.

[
θ̇

θ̈

]
=

[
0 1
0 −25

] [
θ

θ̇

]
+

[
0
80

]
u

+
[

0
f2(θ , θ̇ , u)

]
+

[
0
d2

]
(4.4)

where the states θ(t) and θ̇ (t) are for the angu-
lar position and velocity, respectively; u(t) for the
control input; f2(θ , θ̇ , u) for the non-affine uncer-
tainty added at the control input; and d2(t) is the
external disturbance. Using common notations in the
state space mode-based control system design, let

x =
[
θ

θ̇

]
, g(x) =

[
0 1
0 −25

] [
θ

θ̇

]
, b =

[
0
80

]
, f (x, u) =

f2(θ , θ̇ , u) and d =
[
0
d2

]
with f2(θ , θ̇ , u) = 32(θ + θ̇

+ arctan(u)).
Control objective: This is to design the control law

u to drive the system following a desired reference
trajectory of

[
θ̇

θ̈

]
=

[
0 1

−900 −60

] [
θm
θ̇m

]

+
[

0
900

]
c (4.5)

where θm(t) and θ̇m(t) are the reference states, and
c(t) is the command input to stimulate the reference
model. In the standard state space equation, xm =[
θm
θ̇m

]
, Am =

[
0 1

−900 −60

]
and Bm =

[
0
900

]
.

UDERC: The control law is formulated with

u(t) = b+
[

− g(x) + (Amxm(t) + Bmc(t))

+ 1
τ

(
(I − (Am + K)τ )e(t)

− (Am + K)

∫ t

0
e(ξ)dξ

)]
. (4.6)

where b+ = (bTb)−1bT is the pseudoinverse of b. This
simplified control law demonstrates the nature of the
UDE-based control strategy. It (1) cancels the known
system dynamics to remove the effect to mix up with
the other control functions, (2) inserts the desired
dynamics assigned by the referencemodel and (3) adds
a proportional–integral-like function to regulate the
errors to increase robustness. For the following simu-
lation studies, assign the controller parameters K = 0,
τ = 0.01.

UDSM-control: The design takes the following tasks:
(1) designing the SMI with the inner loop (x =
Ki(P̂−1, P, xd)) to achieve Îip = I2 and (2) design-
ing the invariant controller with the external loop to
achieve the whole system performance.

(1) Design of the SMI: Completed at the beginning
of the section, which is applicable for both case
studies.

(2) Design of the invariant controller: Choose the
same desired closed loop transfer function (Ren
et al., 2015) G = ω2

n
s2+2ωns+ω2

n
with ωn = √

90 =
30 and ζ = 1, that is, G = 900

s2+60s+900 . There-
fore, the invariant controller C1 = G

1−G = 900
s2+60s .

Accordingly, the two desired states are assigned as
xd1 = 1

s
900
s+60 , ẋd1 = xd2 = 900

s+60 .

Simulations: Both UDERC and UDSM-control are
applied to control the systemwith an added non-affine
uncertainty f2(θ , θ̇ , u) = 32(θ + θ̇ + arctan(u)) at the
control input.

Test 1: Tracking a step reference with the external
disturbance d2(t) = 0. Figure 7 is a pack to show the
computational experimental results obtained with the
UDERC (Ren et al., 2015) and the UDSM-control.

Test 2: Tracking a sinusoidal (0.5 cos(0.5π t)) refer-
encewith the external disturbanced2(t) = 32 cos(2π t).
Figure 8 is a pack to show the computational
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Figure 7. (a) Output response θ . (b) Control input u. (c) System tracking error. Test with step reference inputs.
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Figure 8. (a) Output response θ . (b) Control input u. (c) System tracking error.
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experimental results obtained with the UDERC (Ren
et al., 2015) and the UDSM-control.

4.4. Comparison on the simulated plots

(1) UDSM-control is confirmed with the repeatability
with the same properties as simulated in the first
case study.

(2) Both UDERC and UDSM-control can achieve the
same specified control objectives.

(3) UDERC requests three design procedures, plant
DI, desired performance implementation and
uncertainty estimation/rejection. The UDSM-
control takes two DIs. Basically, UDERC is a
model-based design and UDSM-control is a data-
driven design without traditional iterative learn-
ing routines.

(4) For dealing with uncertainties and disturbance,
the UDERC needs a filter to estimate the uncer-
tainty, but the UDSM-control only needs the
assumption of the unknown bound.

5. Conclusions

The study presents aUDSM-control framework, amile-
stone in robust U-control. The simulation results have
demonstrated the conceptual insight and analytical
derivations. There are a few bullet points to conclude
the study.

Achieved: Against classical NDI, this study pro-
poses an expanded robust NDI by cancelling non-
linearities and dynamics and overcomes the plant
uncertainty directly in the direct inner loop. The sep-
aration of two DIs largely reduces the complexity
in the nonlinear control system design. The type of
data-driven control does not require iterative learn-
ing routines compared with those classical data-driven
control approaches. These foundations could be seam-
lessly integrated with many exiting nonlinear control
approaches. Hopefully the DSMC could contribute to
the SMC research. In research methods, this study
uses basic tools, such as Lyapunov stability, SMC, NDI,
to effectively develop innovative solutions for chal-
lenging issues in the robust nonlinear control system
design.

Topics for further research: State observer should
be considered sooner or later since full states are not
always available in most of the modern control engi-
neering systems. The study results should be expanded

to accommodate some hard control dynamic sys-
tems, such as those with large pure time delay, non-
minimum phase/unstable nonlinear zero dynamics.
If possible, we would like to receive feedback with
real control system tests or at least simulations with
hardware in loop.

Acknowledgements

The authors express their gratitude to the editors and the
anonymous reviewers for their helpful comments and con-
structive suggestions with regard to the revision of the paper.
The second author is grateful to the partial PhD studentship
from the Engineering Modelling and Simulation Research
Group of the University of the West of England, UK.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Notes on contributors

Quanmin Zhu is a professor in con-
trol systems at the Department of Engi-
neering Design and Mathematics, Uni-
versity of the West of England, Bristol,
UK. He obtained his MSc in Harbin Insti-
tute of Technology, China, in 1983 and
PhD in Faculty of Engineering, Univer-
sity of Warwick, UK, in 1989. His main

research interests include nonlinear system modelling, iden-
tification and control. He has published over 250 papers
on these topics, edited various books with Springer, Else-
vier and the other publishers, and provided consultancy to
various industries. Currently Professor Zhu is an Editor of
International Journal of Modelling, Identification and Con-
trol, Editor of International Journal of Computer Applications
in Technology and Editor of Elsevier book series of Emerg-
ing Methodologies and Applications in Modelling, Identifica-
tion and Control. He is the founder and president of annual
International Conference on Modelling, Identification and
Control.

Ruobing Li received his B.Sc. Degree from
Northwestern Polytechnical University in
2018, the M.Sc. Degree from the Univer-
sity of Bristol in 2020. Currently he is
pursuing PhD at the Department of Engi-
neering Design andMathematics, Univer-
sity of the West of England, Bristol, UK.
His research focuses on nonlinear system

modelling, simulation, and control.



16 Q. ZHU ET AL.

Xing-Gang Yan received his B.Sc. Degree
from Shaanxi Normal University, in 1985,
M.Sc. Degree from Qufu Normal Uni-
versity in 1991, and a Ph.D. Degree of
Engineering from Northeastern Univer-
sity, China, in 1997. Currently, he is Senior
Lecturer of Control Engineering at the
University of Kent, UK.His research inter-

est includes sliding mode control, decentralised control and
fault detection and isolation for interconnected systems and
nonlinear time delay systems.

References

Chakrabortty, A., & Arcak, M. (2009). Time-scale separa-
tion redesigns for stabilization and performance recovery
of uncertain nonlinear systems. Automatica, 45(1), 34–44.
https://doi.org/10.1016/j.automatica.2008.06.004

Das, A., Subbarao, K., & Lewis, F. (2009). Dynamic inver-
sion with zero-dynamics stabilisation for quadrotor con-
trol. IET Control Theory & Applications, 3(3), 303–314.
https://doi.org/10.1049/iet-cta:20080002

Du, W., Wu, X., & Zhu, Q. (2012). Direct design of a U-
model-based generalized predictive controller for a class
of non-linear (polynomial) dynamic plants. Proceedings
of the Institution of Mechanical Engineers, Part I: Jour-
nal of Systems and Control Engineering, 226(1), 27–42.
https://doi.org/10.1177/0959651811409655

Geng, X., Zhu, Q., Liu, T., & Na, J. (2019). U-model
based predictive control for nonlinear processes with input
delay. Journal of Process Control, 75, 156–170. https://doi.
org/10.1016/j.jprocont.2018.12.002

Horn, J. F. (2019). Non-linear dynamic inversion con-
trol design for rotorcraft. Aerospace, 6(3), Article 38.
https://doi.org/10.3390/aerospace6030038

Hou, Z. S., & Wang, Z. (2013). From model-based control to
data-driven control: Survey, classification and perspective.
Information Sciences, 235, 3–35. https://doi.org/10.1016/j.
ins.2012.07.014

Hussain, N. A. A., Ali, S. S. A., Ovinis, M., Arshad, M. R.,
& Al-Saggaf, U. M. (2020). Underactuated coupled nonlin-
ear adaptive control synthesis using U-model for multivari-
able unmanned marine robotics. IEEE Access, 8, 1851–1865.
https://doi.org/10.1109/ACCESS.2019.2961700

Isidori, A. (2013). Nonlinear control systems. Springer Science
& Business Media.

Li, R., Zhu, Q., Kiely, J., & Zhang, W. (2020). Algorithms for U-
model-based dynamic inversion (UM-dynamic inversion)
for continuous time control systems.Complexity, 2020. Arti-
cle ID 3640210. https://doi.org/10.1155/2020/3640210

Lin, Z. (2009, June 17-19). Low gain and low-and-high gain feed-
back: A review and some recent results. 2009 Chinese control
and decision conference (pp. lii–lxi). IEEE.

Miller, C. (2011, August 08-11). Nonlinear dynamic inver-
sion baseline control law: Architecture and performance pre-
dictions. AIAA guidance, navigation, and control confer-
ence, Portland, Oregon (p. 6467).

Ren, B., Zhong, Q. C., & Chen, J. (2015). Robust control
for a class of nonaffine nonlinear systems based on the
uncertainty and disturbance estimator. IEEE Transactions on
Industrial Electronics, 62(9), 5881–5888. https://doi.org/10.
1109/TIE.2015.2421884

Shafiq, M., & Haseebuddin, M. (2005). U-model-based inter-
nal model control for non-linear dynamic plants. Proceed-
ings of the Institution of Mechanical Engineers, Part I: Jour-
nal of Systems and Control Engineering, 219(6), 449–458.
https://doi.org/10.1243/095965105X33563

Sieberling, S., Chu, Q. P., & Mulder, J. A. (2010). Robust flight
control using incremental nonlinear dynamic inversion and
angular acceleration prediction. Journal of Guidance, Con-
trol, and Dynamics, 33(6), 1732–1742. https://doi.org/10.
2514/1.49978

Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol.
199, No. 1). Prentice Hall.

Tarokh, M. (2017). Solving a class of nonlinear inverse prob-
lems using a feedback control approach.Mathematical Prob-
lems in Engineering, 2017, 1–11. https://doi.org/10.1155/
2017/6843614

Wang, X., Van Kampen, E. J., Chu, Q., & Lu, P. (2019). Sta-
bility analysis for incremental nonlinear dynamic inversion
control. Journal of Guidance, Control, and Dynamics, 42(5),
1116–1129. https://doi.org/10.2514/1.G003791

Wang, Y. C., Sheu, D., & Lin, C. E. (2015). A uni-
fied approach to nonlinear dynamic inversion control
with parameter determination by eigenvalue assignment.
Mathematical Problems in Engineering, 2015. Article ID
548050. https://doi.org/10.1155/2015/548050

Wei, W., Chen, N., Zhang, Z., Liu, Z., & Zuo, M. (2020).
U-model-based active disturbance rejection control for
the dissolved oxygen in a wastewater treatment process.
Mathematical Problems in Engineering, 2020. Article ID
3507910. https://doi.org/10.1155/2020/3507910

Yan, X. G., Spurgeon, S. K., & Edwards, C. (2017). Variable
structure control of complex systems. Communications and
control Engineering. Springer.

Yang, I., Lee, D., & Han, D. S. (2014). Designing a robust non-
linear dynamic inversion controller for spacecraft formation
flying.Mathematical Problems in Engineering.

Zhang, W. C., Zhu, Q. M., Mobayen, S., Yan, H., Qiu, J.,
& Narayan, P. (2020). U-Model and U-control method-
ology for nonlinear dynamic systems. Complexity, 2020.
Article ID 1050254. https://doi.org/10.1155/2020/1050
254

Zhu, Q. M., & Guo, L. Z. (2002). A pole placement con-
troller for non-linear dynamic plants. Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of Sys-
tems and Control Engineering, 216(6), 467–476. https://doi.
org/10.1177/095965180221600603

Zhu, Q. M., Liu, L., Zhang, W. C., & Li, S. Y. (2018). Control
of complex nonlinear dynamic rational systems. Complexity,
2018. Article ID 8953035. https://doi.org/10.1155/2018/895
3035

Zhu, Q. M., Na, J., Boubaker, O., Zhang, W. C., Mahmoud,
M. S., & Huang, J. (2020). From complexity to simplicity

https://doi.org/10.1016/j.automatica.2008.06.004
https://doi.org/10.1049/iet-cta:20080002
https://doi.org/10.1177/0959651811409655
https://doi.org/10.1016/j.jprocont.2018.12.002
https://doi.org/10.3390/aerospace6030038
https://doi.org/10.1016/j.ins.2012.07.014
https://doi.org/10.1109/ACCESS.2019.2961700
https://doi.org/10.1155/2020/3640210
https://doi.org/10.1109/TIE.2015.2421884
https://doi.org/10.1243/095965105X33563
https://doi.org/10.2514/1.49978
https://doi.org/10.1155/2017/6843614
https://doi.org/10.2514/1.G003791
https://doi.org/10.1155/2015/548050
https://doi.org/10.1155/2020/3507910
https://doi.org/10.1155/2020/1050254
https://doi.org/10.1177/095965180221600603
https://doi.org/10.1155/2018/8953035


INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 17

in U-model enhanced control system design. Mathematical
Problems in Engineering. https://www.hindawi.com/journals/
mpe/si/931240/page/1/

Zhu, Q. M., Wang, Y., Zhao, D., Li, S., & Billings, S. A. (2015).
Review of rational (total) nonlinear dynamic system mod-
elling, identification, and control. International Journal of

Systems Science, 46(12), 2122–2133. https://doi.org/10.1080/
00207721.2013.849774

Zhu, Q. M., Zhang, W. C., Zhang, J. H., & Sun, B. (2019).
U-neural network-enhanced control of nonlinear dynamic
systems.Neurocomputing, 352, 12–21. https://doi.org/10.1016/
j.neucom.2019.04.008

https://www.hindawi.com/journals/mpe/si/931240/page/1/
https://doi.org/10.1080/00207721.2013.849774
https://doi.org/10.1016/j.neucom.2019.04.008

