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1 INTRODUCTION

The advancement of modern technologies has produced many complex
systems. An important class of such systems, which is frequently called
a system of systems, or large-scale system, can be expressed by sets of
lower-order ordinary differential equations that are linked through inter-
connections. Such models are typically called large-scale interconnected
systems (see, e.g., [1–4]). In order to achieve the desired performance of the
closed-loop system in the presence of uncertainties, robust control methods
are needed. In recent decades, much of the literature has focused on
designing advanced robust controllers for such systems using H∞ control
[5], backstepping techniques [6], robust adaptive control [7], and sliding
mode control [8–10].

Increasing requirements for system performance have resulted in
increasing complexity within systems modeling, and thus, it becomes
interesting to consider nonlinear, large-scale interconnected systems.
Such models are then used for controller design. In order to obtain the
required levels of performance from the controllers, it is desirable to
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48 2. NONLINEAR INTERCONNECTED SYSTEMS WITH APPLICATIONS

have knowledge of all the system states for use by the control scheme.
This state information may be difficult or expensive to obtain, therefore,
it would be advantageous to design an observer to estimate all the
system states using only the subset of information available from the
measured and known inputs and outputs of the system. If the uncertainties
in the system are in the form of unknown parameters, then adaptive
techniques can be applied such that these unknown parameters are
estimated by designing adaptive observers, which is more challenging
[11]. This motivates efforts to use an adaptive scheme to design adaptive
observers that simultaneously estimate the unknown parameters, and the
unavailable states of a dynamical system.

1.1 Interconnected Systems

Large-scale interconnected systems have been studied since the 1960s
(see [12] and references therein) due to their relevance in a number of prac-
tical application areas, and the availability of pertinent theoretical results.
Large-scale interconnected systems widely exist in the real world, for
example, power networks, ecological systems, transportation networks,
biological systems, and information technology networks [2, 13]. A large-
scale system is composed of several subsystems with interconnections,
whereby the dynamics interact [14]. The application of centralized control
[15] to prescribe stability of an interconnected system, particularly when
the system is spread over a wide geographical area, may require additional
costs for implementation, and careful consideration of the required infor-
mation sharing between subsystems. This motivates consideration of the
design of decentralized control strategies, whereby each subsystem has a
local control based only upon locally available information.

Early work focused on linear systems [16, 17]. However, due to the
uncertainties and disturbances present in large-scale interconnected sys-
tems, study of the stability of such systems is a very challenging task [18].
Subsequent results used decentralized control frameworks for nonlinear
large-scale interconnected systems. The study of such decentralized con-
trollers has stimulated a great deal of literature (e.g., [19–21]), and recently,
[22, 23]. In much of this work, however, it is assumed that all the system
state variables and the system parameters are available for use by the
controller [1, 2, 24, 25]. However, this assumption can limit practical appli-
cation, as usually only a subset of state variables may be available/measur-
able [26]. Moreover, many practical systems have unknown parameters. It
becomes of interest to establish adaptive observers to estimate the system
states and the system parameters simultaneously. It should also be noted
that such adaptive observer design has been applied for fault detection and
isolation [26–28]. This further motivates the study of adaptive observer’s
design for nonlinear large-scale interconnected systems.

I. OBSERVER DESIGN
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1.2 Adaptive Observer

The concept of an observer was first introduced by Luenberger [29], in
which the difference between the output measurements from the actual
plant and the output measurements of a corresponding dynamical model
were used to develop an injection signal to force the resulting output
error to zero. In the 1970s, the problem of designing observers for esti-
mating system states for large-scale interconnected systems was addressed
in [16]. Subsequently, many methods have been developed to design
observers for large-scale interconnected linear systems [30–33]. In the real
world, many practical control systems involve unknown parameters due
to the mechanical wear and modeling errors. Therefore, adaptive observers
have been developed to estimate the unavailable states and the unknown
parameters simultaneously. Over the past few decades, much literature
has been devoted to the design of adaptive observers for linear and
nonlinear systems. The early results are mainly for linear systems [34, 35].
In the case of nonlinear systems with unknown parameters, many adaptive
observers have been developed (see e.g., [36–38]). Adaptive observers for
nonlinear systems have been published in [36], based on the fact that the
nonlinear systems can be transformed to a particular observable canonical
form. The authors in [37, 38] proposed adaptive observers for nonlinear
systems that can be transformable by a global state space transformation
to other coordinates, with some extra constraints and conditions imposed
on the system. These proposed adaptive observers have been extended in
[39, 40] to deal with a general class of nonlinear systems. However, the
convergence of the parameters’ estimation errors depends on persistence
of the excitation condition.

More recently, adaptive observers using different techniques have been
proposed in, for example, [41–43], where the unknown parameters are
limited to be constant. Compared with much existing work in adaptive
observer design with unknown constant parameters, the corresponding
observation results for unknown time varying parameters (TVPs) are
very limited. The authors in [44] proposed a sampled output, high-gain
observer for a class of uniformly observable nonlinear systems in which
the unknown parameters are bounded. An adaptive estimator is proposed
in [45] to estimate TVPs for nonlinear systems. However, all the system
states are assumed to be available. The H−/H∞ fault detection observer in
the finite frequency domain has been designed in [46] for a class of linear-
parameter, varying descriptor systems.

Boizot et al. [47] developed an adaptive observer by using an extended
Kalman filter to reduce the effect of perturbations. However, in terms of
the parameter estimation for nonlinear systems, it is usually very difficult
to analyze the stability of the extended Kalman filter. It should be noted
that unknown parameters considered in these papers are constant. An
adaptive redesign of reduced order nonlinear observers is presented in
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50 2. NONLINEAR INTERCONNECTED SYSTEMS WITH APPLICATIONS

[48], in which the solution of a partial differential equation is required,
which may not be possible in most cases. In order to improve the quality
of the current drawn from the utility grid, an adaptive nonlinear observer
is designed in [49] to estimate the inductor current, which is required in
the closed-loop control system of power factor correction as an essential
part of AC/DC converters. An adaptive observer is designed for a class of
MIMO uniformly observable nonlinear systems with linear and nonlinear
parameterizations in [50], and the exponential convergence of the error
dynamics for both types of parameterization are guaranteed under the
persistent excitation condition. Tyukin et al. [51] considered the problem
of asymptotic reconstruction of the state and parameter. However, in
both [50, 51], it is required that the unknown parameters are constant.
The literature in [52] proposed an adaptive state estimator for a class of
multiinput and multioutput nonlinear systems with uncertainties in the
state and the output equations, in which the systems considered are not
interconnected systems. The work in [53] proposed an adaptive observer
that expands the extended state observer to nonlinear disturbed systems.
However, the adaptive extended state observer is linear, and requires that
the error dynamics can be transformed into a canonical form.

An adaptive observer applying sliding mode techniques has been devel-
oped in [54] to enhance the performance of the adaptive observer pro-
posed by Yan and Edwards [55]. Adaptive sliding mode, observer-based
fault reconstruction for nonlinear systems with parametric uncertainties is
considered in [56]. However, the unknown parameters considered in these
papers are constant. Many adaptive observers have been developed using
sliding mode techniques for particular applications and for particular pur-
poses (see e.g., [57–60]); and thus, corresponding specific conditions need
to be imposed on the systems considered. Sliding mode techniques with
super twisting algorithms are used in [61] to design adaptive observers for
nonlinear systems in which the unknown parameter vector is assumed to
be constant.

1.3 Contribution

In this chapter, observers are designed for a class of nonlinear intercon-
nected systems with uncertain TVPs, in which both the isolated subsystems
and the interconnections are nonlinear. The designed observers are vari-
able structure interconnected systems, but may not result in sliding motion.
Under the condition that the difference between the unknown TVPs and
the corresponding uncertain nominal values are bounded by constants,
adaptive updating laws are proposed to estimate the parameters. The
persistence of excitation conditions is not required. A set of sufficient
conditions are proposed such that the error dynamics formed by the system
states and the designed observers are asymptotically stable, while the
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parameters’ estimation errors are uniformly, ultimately bounded using
LaSalle’s theorem. The results obtained are applied to a coupled inverted
pendulum system, and simulation results are presented to demonstrate
the effectiveness and feasibility of the developed results. The main con-
tribution includes: (i) Both the interconnections and isolated subsystems
take nonlinear forms. (ii) The unknown parameters considered in the
system are time varying, and the corresponding nominal values are not
required to be known. (iii) The asymptotic convergence of the observation
error between the states of the considered systems and the states of the
designed observers is guaranteed; while the estimate errors of the TVPs
are uniformly, ultimately bounded.

1.4 Notation

For a square matrix A, A > 0 denotes a symmetric positive definite
matrix, and λmin(A)(λmax(A)) denotes the minimum (maximum) eigen-
values of A. The symbol In represents the nth-order unit matrix and R+
represent the set of nonnegative real numbers. The set of n×m real matrices
will be denoted by Rn×m. The Lipschitz constant of the function f will be
written as �f . Finally, ‖·‖ denotes the Euclidean norm, or its induced norm.

2 SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a nonlinear interconnected system composed of N subsystems
described as follows

ẋi = Aixi + fi(xi, ui) + Biθi(t)ξi(t) +
N∑

j=1
j�=i

Hij(xj) (2.1)

yi = Cixi (2.2)

where xi ∈ Rni , ui ∈ Ui ∈ Rmi (Ui is the admissible control set), and
yi ∈ R are the state variables, inputs, and outputs of the ith subsystem,
respectively. The functions fi(·) are known to be continuous, the scalars
θi(t) ∈ R are unknown TVPs, and ξi(t) ∈ R are known regressor signals.
The matrices Ai ∈ Rni×ni , Bi ∈ Rni×1, and Ci ∈ R1×ni are constants, and Ci
is full column rank. The terms

N∑
j=1
j�=i

Hij(xj)

are the known interconnections of the ith subsystems for i = 1, . . . , N.

I. OBSERVER DESIGN



52 2. NONLINEAR INTERCONNECTED SYSTEMS WITH APPLICATIONS

Assumption 1. The matrix pairs (Ai, Ci) are observable for i = 1, . . . , N.
From Assumption 1, there exist matrices Li such that Ai − LiCi are

Hurwitz stable. This implies that, for any positive-definite matrices Qi ∈
Rni×ni , the Lyapunov equations

(Ai − LiCi)
TPi + Pi(Ai − LiCi) = −Qi (2.3)

have unique positive-definite solutions Pi ∈ Rni×ni .
Assumption 2. There exist matrices Fi ∈ R such that solutions Pi to the

Lyapunov equations (2.3) satisfy the constraints

BT
i Pi = FiCi, i = 1, . . . , N (2.4)

Remark 1. To solve the Lyapunov equations (2.3) in the presence of the
constraints, Eq. (2.4) is the well-known constrained Lyapunov problem
(CLP) [62]. Although there is no general solution available for this problem,
associated discussion, and an algorithm, can be found in [63], which may
help to solve the CLP for a specific system.

Assumption 3. The uncertain TVPs θi(t) satisfy

|θi(t) − θ0i | ≤ ε0i (2.5)

where θ0i are unknown constants, and ε0i are known constants for
i = 1, . . . , N.

Remark 2. Assumption 3 is to specify a class of uncertainties tolerated
in the observer design. The unknown constants θ0i given in Eq. (2.5)
are called the nominal value of the uncertain TVPs θi(t) throughout this
chapter. Different from the existing work (see e.g., [64, 65]), the unknown
parameters θi(t) are time varying, and the nominal values θ0i are not
required to be known.

For further analysis, the terms Biθi(t)ξi(t) in system (2.1) are rewritten as

Biθi(t)ξi(t) = Bi[θ0i + εi(t)]ξi(t) (2.6)

where the scalers εi(t) = θi(t) − θ0i .
Assumption 4. The nonlinear terms fi(xi, ui), with respect to xi ∈ Rni , for

ui ∈ Ui ∈ Rmi for i = 1, 2, . . . , N and Hij(xj) satisfy the Lipschitz condition.
Assumption 4 implies that there exists nonnegative function �fi and

constant �Hij such that

‖fi(x̂i, ui) − fi(xi, ui)‖ ≤ �fi(ui)‖x̂i − xi‖ (2.7)

‖Hij(x̂j) − Hij(xj)‖ ≤ �Hij‖x̂j − xj‖ (2.8)

for i = 1, 2, . . . , N and i �= j.
Remark 3. Assumption 4 is the limitation to the nonlinear terms, and the

interconnections that are necessary to achieve the asymptotic stability of
the observation error dynamics. It should be noted that in Assumption 4,
it is required that fi(xi, ui) satisfies Lipschitz condition, with respect to only
the variable xi.
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For nonlinear interconnected system (2.1)–(2.2) satisfying Assump-
tions 1–4, the objective of this chapter is to design an observer with
appropriate adaptive laws such that the states of the system (2.1)–(2.2) can
be estimated asymptotically, and the estimation errors of the unknown
parameters θi(t) in Eq. (2.1) are uniformly bounded.

3 ADAPTIVE OBSERVER DESIGN WITH PARAMETERS
ESTIMATION

In this section, an asymptotic observer is designed, and the proposed
adaptive laws are presented.

From Eq. (2.6), system (2.1) can be rewritten as

ẋi = Aixi + fi(xi, ui) + Bi[θ0i + εi(t)]ξi(t) +
N∑

j=1
j�=i

Hij(xj) (2.9)

yi = Cixi (2.10)

For systems (2.9)–(2.10), construct dynamical systems

˙̂xi = Aix̂i + fi(x̂i, ui) + Li(yi − ŷi) + Biθ̂i(t)ξi(t) − 2P−1
i (FiCi)

T|ξi(t)|ε0i

× ψi(ŷi, yi) − Biε̂i(t)ξi(t) +
N∑

j=1
j�=i

Hij(x̂j) (2.11)

ŷi = Cix̂i (2.12)

where Pi and Ci satisfy Eqs. (2.3), (2.4),

ψi(ŷi, yi) =
{

Fi(ŷi−yi)

‖Fi(ŷi−yi)‖ , Fi(ŷi − yi) �= 0
0, Fi(ŷi − yi) = 0

(2.13)

for i = 1, 2, . . . , N, and θ̂i(t) is given by the adaptive law as follows

˙̂
θi(t) = −2δi(Fi(ŷi − yi))

Tξi(t) (2.14)

where δi is a positive constant that is a design parameter, the known
constant ε0i satisfies the inequality in Assumption 3, and ε̂i(t) is defined by

ε̂i(t) = − 1
δi

θ̂i(t) (2.15)

for i = 1, 2, . . . , N.
Let exi = x̂i − xi. Then, from systems (2.9), (2.10) and (2.11), (2.12), the

error dynamical systems can be described by

I. OBSERVER DESIGN



54 2. NONLINEAR INTERCONNECTED SYSTEMS WITH APPLICATIONS

ėxi = (Ai − LiCi)exi + [fi(x̂i, ui) − fi(xi, ui)]

+
N∑

j=1
j�=i

[Hij(x̂j) − Hij(xj)] + Biθ̃i(t)ξi(t)

− Biε̂i(t)ξi(t) − Biεi(t)ξi(t) − 2P−1
i (FiCi)

T|ξi(t)|ε0iψi(ŷi, yi) (2.16)

where θ̃i(t) is defined by

θ̃i(t) = θ̂i(t) − θ0i (2.17)

for i = 1, 2, . . . , N.
For the convenience of further analysis, let

ε̃i(t) = ε̂i(t) − ε0i (2.18)

where the known constant ε0i satisfies the inequality in Assumption 3 and
ε̂i(t) is defined in Eq. (2.15), for i = 1, 2, . . . , N.

4 STABILITY OF THE ERROR DYNAMICAL SYSTEMS

The following result is ready to be presented:
Theorem 1. Under Assumptions 1–4, the error dynamical systems (2.16) with

adaptive law (2.14) are uniformly ultimately bounded if the matrix WT + W
is positive definite, where the matrix W = [wij]N×N and its entries wij are
defined by

wij =
{
λmin(Qi) − 2�fi‖Pi‖, i = j
−2‖Pi‖�Hij , i �= j (2.19)

where Pi and Qi satisfy Lyapunov equation in Eq. (2.3) and λmin(Qi) represents
the minimum eigenvalue of the matrix Qi for i = 1, 2, . . . , N. Further, the errors
exi given in Eq. (2.16) satisfy

lim
t→∞ ‖exi(t)‖ = 0, i = 1, 2, . . . , N (2.20)

Proof . For systems (2.14), (2.16), consider the candidate Lyapunov
function

V =
N∑

i=1

eT
xi

Piexi + 1
2

N∑
i=1

(
1
δi

θ̃2
i (t) + ε̃2

i (t)
)

(2.21)

where δi > 0 is a design parameters given in Eq. (2.14) for i = 1, 2, . . . , N.
Note that, in Eq. (2.21), ε̃i(t) is dependent on θ̃i(t). From Eqs. (2.15), (2.17),
(2.18), it can be seen that the relationship between ε̃i(t) and θ̃i(t) is given by
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ε̃i(t) = ε̂i(t) − ε0i

= − 1
δi

θ̂i(t) − ε0i

= − 1
δi

(θ̃i(t) + θ0i) − ε0i

Then, from Eq. (2.16)

V̇ =
N∑

i=1

(ėT
xi

Piexi + eT
xi

Piėxi) +
N∑

i=1

(
1
δi

θ̃i(t)
˙̃
θi(t) + ε̃i(t) ˙̃εi(t)

)

=
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩eT

xi
[(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eT
xi

Pi[fi(x̂i, ui) − fi(xi, ui)]

+ 2eT
xi

Pi

N∑
j=1
j�=i

[Hij(x̂j) − Hij(xj)] + 2eT
xi

PiBiθ̃i(t)ξi(t) − 2eT
xi

PiBiεi(t)ξi(t)

− 2eT
xi

PiBiε̂i(t)ξi(t) + 1
δi

θ̃i(t)
˙̃
θi(t) + ε̃i(t) ˙̃εi(t)

− 4eT
xi

PiP
−1
i (FiCi)

T|ξi(t)|ε0iψi(ŷi, yi)

⎫⎪⎪⎬
⎪⎪⎭ (2.22)

By using condition (2.4) and Ciexi = ŷi − yi,

eT
xi

PiBi = ((PiBi)
Texi)

T = (BT
i Piexi)

T

= (FiCiexi)
T = (Fi(ŷi − yi))

T (2.23)

Substituting Eq. (2.23) into Eq. (2.22), it follows that

V̇ =
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩eT

xi
[(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eT
xi

Pi[fi(x̂i, ui) − fi(xi, ui)]

+ 2eT
xi

Pi

N∑
j=1
j�=i

[Hij(x̂j) − Hij(xj)] +
[

2(Fi(ŷi − yi))
Tξi(t) + 1

δi

˙̃
θi(t)

]
θ̃i(t)

− 2(Fi(ŷi − yi))
Tεi(t)ξi(t) − 2(Fi(ŷi − yi))

T ε̂i(t)ξi(t)

+ ε̃i(t) ˙̃εi(t) − 4(Fi(ŷi − yi))
T|ξi(t)|ε0iψi(ŷi, yi)

⎫⎪⎪⎬
⎪⎪⎭ (2.24)
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From Eq. (2.17), it can be seen that ˙̃
θi(t) = ˙̂

θi(t) because θ0i is constant.
By substituting Eqs. (2.13), (2.14) into Eq. (2.24) gives

V̇ =
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩eT

xi
[(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eT
xi

Pi[fi(x̂i, ui) − fi(xi, ui)]

+ 2eT
xi

Pi

N∑
j=1
j�=i

[Hij(x̂j) − Hij(xj)] − 2(Fi(ŷi − yi))
Tεi(t)ξi(t)

− 2(Fi(ŷi − yi))
T ε̂i(t)ξi(t) + ε̃i(t) ˙̃εi(t) − 4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i

⎫⎪⎪⎬
⎪⎪⎭

From Eq. (2.18), it can be seen that ˙̃εi(t) = ˙̂εi(t).

V̇ =
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩eT

xi
[(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eT
xi

Pi[fi(x̂i, ui) − fi(xi, ui)]

+ 2eT
xi

Pi

N∑
j=1
j�=i

[Hij(x̂j) − Hij(xj)] − 2(Fi(ŷi − yi))
Tεi(t)ξi(t)

− [2(Fi(ŷi − yi))
Tξi(t) − ˙̃εi(t)]ε̂i(t) − ε0i

˙̃εi(t) − 4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i

⎫⎪⎪⎬
⎪⎪⎭

(2.25)

Substituting Eq. (2.15) into Eq. (2.25) yields

V̇ =
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩eT

xi
[(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eT
xi

Pi[fi(x̂i, ui) − fi(xi, ui)]

+ 2eT
xi

Pi

N∑
j=1
j�=i

[Hij(x̂j) − Hij(xj)] − 2(Fi(ŷi − yi))
Tεi(t)ξi(t)

− 2ε0i(Fi(ŷi − yi))
Tξi(t) − 4‖Fi(ŷi − yi)‖ ‖ξi(t)‖ε0i

⎫⎪⎪⎬
⎪⎪⎭
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It is clear from Eq. (2.3) that

V̇ ≤
N∑

i=1

{
−eT

xi
Qiexi + 2‖exi‖ ‖Pi‖[fi(x̂i, ui) − fi(xi, ui)]

+ 2‖exi‖ ‖Pi‖
N∑

j=1
j�=i

[Hij(x̂j) − Hij(xj)]

−2(Fi(ŷi − yi))
Tξi(t)[εi(t) + ε0i] − 4‖Fi(ŷi − yi)‖ ‖ξi(t)‖ε0i

⎫⎪⎪⎬
⎪⎪⎭

≤
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩−eT

xi
Qiexi + 2‖exi‖ ‖Pi‖[fi(x̂i, ui) − fi(xi, ui)] + 2‖exi‖ ‖Pi‖

N∑
j=1
j�=i

[Hij(x̂j)

−Hij(xj)] + 4‖Fi(ŷi − yi)‖ ‖ξi(t)‖ε0i − 4‖Fi(ŷi − yi)‖ ‖ξi(t)‖ε0i

⎫⎪⎪⎬
⎪⎪⎭

≤
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩−eT

xi
Qiexi + 2‖exi‖ ‖Pi‖[�fi‖x̂i − xi‖] + 2‖exi‖ ‖Pi‖

N∑
j=1
j�=i

[�Hij‖x̂j − xj‖]

⎫⎪⎪⎬
⎪⎪⎭

≤ −
N∑

i=1

⎧⎪⎪⎨
⎪⎪⎩(λmin(Qi) − 2‖Pi‖�fi)‖exi‖2 −

N∑
j=1
j�=i

(2‖Pi‖�Hij‖exi‖‖exj‖)

⎫⎪⎪⎬
⎪⎪⎭ (2.26)

Then, from the definition of the matrix W in Eq. (2.19) and the preceding
inequality, it follows that

V̇ ≤ −1
2

XT[WT + W]X (2.27)

where X = [‖ex1‖, ‖ex2‖, . . . , ‖exN‖]T.
From the LaSalle’s theorem (see e.g., [66]), all the solutions of Eq. (2.16)

are globally, uniformly bounded and satisfy

lim
t→∞ XT[WT + W]X = 0 (2.28)

Further, from the facts

λmin(WT + W)‖X‖2 ≤ XT(WT + W)X
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and

‖X‖2 = ‖ex1‖2 + ‖ex2‖2 + · · · + ‖exN‖2

it is straightforward to see from Eq. (2.28) and the condition WT + W > 0
that

lim
t→∞‖exi(t)‖ = 0, i = 1, 2, . . . , N

Hence the conclusion follows.
Remark 4. It should be noted that the constructed Lyapunov function

(2.21) is a function of variables exi , θ̃i, and ε̃i while the right-hand side of
inequality (2.27) is a function of variables exi only. Therefore, Theorem 1
implies that V̇ is semipositive definite instead of positive definite.

Remark 5. Theorem 1 shows that the augmented systems formed by
Eq. (2.16) and the adaptive law (2.14) are uniformly ultimately bounded.
It should be noted that the estimated states x̂i given by the observer
(2.11) converge to the system states xi in Eq. (2.1) asymptotically, although
the estimate error for the parameters may not be asymptotically conver-
gent. As the uncertain parameters θi in system (2.1) are time-varying,
the approaches developed in [28, 65] cannot be applied to the systems
considered in this chapter.

Remark 6. The designed observer is a variable structure interconnected
system, but it may not produce a sliding motion, which is different from
the work in [65]. In addition, the unknown parameters are considered
constants in [65], while in this chapter they are TVPs.

5 CASE STUDY EXAMPLES

In order to illustrate the method developed in this chapter, case study
examples on a coupled pendulum system and a quarter-car suspension are
carried out in this section.

5.1 A Coupled Inverted Pendulum

Consider a system formed by two inverted pendulums connected by a
spring, as given in Fig. 2.1. There are two balls that are attached at the end of
two rigid rods, respectively. The symbols u1 and u2 denote external torques
imposed on the two pendulums, respectively, which are the control inputs.
The distance b between the two pendulums is assumed to be changeable,
with respect to time t.

Let ϕ1 = x11, ϕ2 = x21, ϕ̇1 = x12, and ϕ̇2 = x22. The coupled inverted
pendulums can be modeled as (see e.g., [66, 67])
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Spring
(interconnection)

m1
m2

u2

ϕ2ϕ1

u1

b

r

FIG. 2.1 Coupled inverted pendulums.

ẋ1 =
[

0 1
0 0

] [
x11
x12

]
+

[
0(

m1gr
J1

− kr2

4J1

)
sin(x11) + 1

J1
u1

]

+
[

0
kr
2J1

]
(l − b) +

[
0

kr2

4J1
sin(x21)

]
(2.29)

y1 = [
1 1

] [
x11
x12

]
(2.30)

ẋ2 =
[

0 1
0 0

] [
x21
x22

]
+

[
0(

m2gr
J2

− kr2

4J2

)
sin(x21) + 1

J2
u2

]

+
[

0
kr
2J2

]
(l − b) +

[
0

kr2

4J2
sin(x11)

]
(2.31)

y2 = [
1 1

] [
x21
x22

]
(2.32)

The end masses of pendulums are m1 = 0.7 kg and m2 = 0.6 kg,
the moments of inertia are J1 = 5 kg and J2 = 4 kg, the constant of
connecting spring is k = 90 N/m, the pendulum height is r = 0.25 m, and
the gravitational acceleration is g = 9.81 m/s2. In order to illustrate the
developed theoretical results, it is assumed that (l − b(t)) = θ1(t) = θ2(t) is
an unknown TVP for i = 1, 2; where l is the natural length of the spring,
and b(t) is the distance between the two pendulum hinges. The aim is to
estimate the unknown TVP (l − b(t)) = θ1(t) = θ2(t) for i = 1, 2, where l is
the natural length of the spring, and b(t) is the distance between the two
pendulum hinges.

In order to avoid system states going to infinity, and for simulation
purposes, the following feedback transformation is introduced

I. OBSERVER DESIGN



60 2. NONLINEAR INTERCONNECTED SYSTEMS WITH APPLICATIONS

ui = −kixi + vi, i = 1, 2 (2.33)

k1 = [
10 15

]
(2.34)

k2 = [
8 12

]
(2.35)

Then, with the given preceding parameters, the systems (2.29)–(2.32) can
be rewritten as

ẋ1 =
[

0 1
−2 −3

]
︸ ︷︷ ︸

A1

[
x11
x12

]
+

[
0

0.06215 sin(x11) + 1
5 v1

]
︸ ︷︷ ︸

f1(x1,u1)

+
[

0
3

]
︸︷︷︸

B1

(l − b(t))︸ ︷︷ ︸
θ1(t)

+
[

0
0.2813 sin(x21)

]
︸ ︷︷ ︸

H12(x2)

(2.36)

y1 = [
1 1

]︸ ︷︷ ︸
C1

[
x11
x12

]
(2.37)

ẋ2 =
[

0 1
−2 −3

]
︸ ︷︷ ︸

A2

[
x21
x22

]
+

[
0

0.01632 sin(x21) + 1
4 v2

]
︸ ︷︷ ︸

f2(x2,u2)

+
[

0
3.75

]
︸ ︷︷ ︸

B2

(l − b(t))︸ ︷︷ ︸
θ2(t)

+
[

0
0.352 sin(x11)

]
︸ ︷︷ ︸

H21(x1)

(2.38)

y2 = [
1 1

]︸ ︷︷ ︸
C2

[
x21
x22

]
(2.39)

Choose

Li = [
0 0

]
and Qi = 4I

for i = 1, 2. It follows that the Lyapunov equations (2.3) have unique
solutions:

Pi =
[

5 1
1 1

]
, i = 1, 2 (2.40)

satisfying the condition (2.4) with

F1 = 3, and F2 = 3.75

For simplicity, it is assumed that

ξi(t) = 1, ε0i = 1, and δi = 2

for i = 1, 2.
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By direct computation, it follows that the matrix WT + W is positive
definite. Thus, all the conditions of Theorem 1 are satisfied. This implies
that the following dynamical systems are the asymptotic observers of the
nonlinear interconnected systems (2.36)–(2.39):

˙̂x1 =
[

0 1
−2 −3

] [
x̂11
x̂12

]
+

[
0

0.06215 sin(x̂11) + 1
5 v1

]

+
[

0
3

]
θ̂1(t) −

[
0

0.4

]
(ŷ1 − y1)

‖ŷ1 − y1‖

−
[

0
3

]
ε̂1(t) +

[
0

0.2813 sin(x̂21)

]
(2.41)

ŷ1 = [
1 1

] [
x̂11
x̂12

]
(2.42)

˙̂x2 =
[

0 1
−2 −3

] [
x̂21
x̂22

]
+

[
0

0.01632 sin(x̂21) + 1
4 v2

]
+

[
0

3.75

]
θ̂2(t)

−
[

0
0.5

]
(ŷ2 − y2)

‖ŷ2 − y2‖ −
[

0
3.75

]
ε̂2(t) +

[
0

0.352 sin(x̂11)

]
(2.43)

ŷ2 = [
1 1

] [
x̂21
x̂22

]
(2.44)

The designed adaptive laws are given by

˙̂
θ1(t) = −4(2.25(ŷ1 − y1))

T (2.45)
˙̂
θ2(t) = −4(2.8125(ŷ2 − y2))

T (2.46)

For simulation purposes, the unknown parameters θ0i and θi(t) are
chosen as 0 and 0.6 sin t, respectively, for i = 1, 2. Simulation in Figs. 2.2
and 2.3 shows that the estimation error between the states of the system
(2.29)–(2.32) and the states of the observer (2.41)–(2.44) converges to zero
asymptotically. Fig. 2.4 shows that the estimation of the parameters is
uniformly bounded with satisfactory accuracy.

5.2 A Quarter-Car Suspension

Consider a vehicle (car, bus, etc.) divided into four parts. In the case
of the four wheels, each part is a composite mechanical spring-damper
system consisting of the quarter part of the mass of the body (together
with passengers), and the mass of the wheel. The vertical positions are
described by upward directed x1 and x2, see Fig. 2.5. The distance between
the road surface and the wheel’s contact point is the disturbance w, varying
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FIG. 2.2 The time response of the first subsystem states x1 = col(x11, x12) and their
estimation x̂1 = col(x̂11, x̂12).

together with the road surface. The suspension is active, which means that
the actuator produces the force F (control signal).

A good suspension system should have satisfactory road holding stabil-
ity, while providing good traveling comfort when riding over bumps and
holes in the roads.
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FIG. 2.3 The time response of the second subsystem states x2 = col(x21, x22) and their
estimation x̂2 = col(x̂21, x̂22).

Denote m1 and m2 as the mass of the quarter body and the wheel,
respectively, while the flexible connections are described by the viscous
damping factor b1 and the spring constants (k1, k2). The motion equations
can be described as follows (see e.g., [68]):

m1ẍ1 = F − b1(ẋ1 − ẋ2) − k1(x1 − x2) (2.47)
m2ẍ2 = −F + b1(ẋ1 − ẋ2) + k1(x1 − x2) − k2(x2 − w) (2.48)

ẋ1 =
[

0 1
−k1
m1

−b1
m1

] [
x11
x12

]
+

[
0

1
m1

F

]
+

[
0

1
m1

(k1x21 + b1x22)

]
(2.49)
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FIG. 2.4 Upper: The time response of θ̂1(t) (dashed line) and θ1(t) (solid line); bottom: the time
response of θ̂2(t) (dashed line) and θ2(t) (solid line).
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FIG. 2.5 A quarter-car suspension.

y1 = [
1 1

] [
x11
x12

]
(2.50)

ẋ2 =
[

0 1
−k2
m2

−b1
m2

] [
x21
x22

]
+

[
0

−k1
m2

x21 − 1
m2

F

]
+

[
0
k2
m2

]
w

+
[

0
1

m2
(k1x11 + b1x12)

]
(2.51)

y2 = [
1 1

] [
x21
x22

]
(2.52)

where m1 = 500 kg, m2 = 300 kg, b1 = 900 N/m/s, k1 = 900 N/m, and
k2 = 600 N/m.

In order to avoid system states going to infinity, and for simulation
purposes, the following feedback transformation is introduced

ui = −kixi (2.53)

ki = [
3.18 4.18

]
, i = 1, 2 (2.54)

Then, with the given parameters, the systems (2.49)–(2.52) can be rewritten
as

ẋ1 =
[

0 1
−1.8 −1.8

]
︸ ︷︷ ︸

A1

[
x11
x12

]
+

[
0

0.002 u

]
︸ ︷︷ ︸

f1(x1,u1)

+
[

0
1.8(x21 + x22)

]
︸ ︷︷ ︸

H12(x2)

(2.55)

y1 = [
3 3

]︸ ︷︷ ︸
C1

[
x11
x12

]
(2.56)
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ẋ2 =
[

0 1
−2 −3

]
︸ ︷︷ ︸

A2

[
x21
x22

]
+

[
0

−3x21 − 0.0033 u

]
︸ ︷︷ ︸

f2(x2,u2)

+
[

0
2

]
︸︷︷︸

B2

w︸︷︷︸
θ(t)

+
[

0
3(x11 + x12)

]
︸ ︷︷ ︸

H21(x1)

(2.57)

y2 = [
1.8 1.8

]︸ ︷︷ ︸
C2

[
x21
x22

]
(2.58)

In order to illustrate the developed theoretical results, it is assumed that
all the system states are available, and the aim is to estimate the distance
between the road surface and the wheel’s contact point w, which is varying
together with the road surface.

Choose

L = [
0 0

]
and Q = 4I

It follows that the Lyapunov equations (2.3) have unique solutions:

P =
[

5 1
1 1

]
(2.59)

satisfying the condition (2.4) with

F = 0.667

For simplicity, it is assumed that

ξ(t) = 1, ε0 = 1, and δ = 5

The following dynamical systems are the observer of the nonlinear
interconnected system (2.55)–(2.58):

˙̂x1 =
[

0 1
−1.8 −1.8

] [
x̂11
x̂12

]
+

[
0

0.002 u

]
+

[
0

1.8(x̂21 + x̂22)

]
(2.60)

ŷ1 = [
3 3

] [
x̂11
x̂12

]
(2.61)

˙̂x2 =
[

0 1
−2 −3

] [
x̂21
x̂22

]
+

[
0

−3x̂21 − 0.0033 u

]
+

[
0
2

]
θ̂ (t) −

[
0

1.2

]
(ŷ2 − y2)

‖ŷ2 − y2‖
−

[
0
2

]
ε̂2(t) +

[
0

3(x̂11 + x̂12)

]
(2.62)

ŷ2 = [
1.8 1.8

] [
x̂21
x̂22

]
(2.63)

The designed adaptive law is given by

˙̂
θ(t) = −10(0.667(ŷ2 − y2))

T (2.64)
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FIG. 2.6 The time response of θ̂ (t) (dashed line) and θ(t) (solid line).

For simulation purposes, the unknown parameters θ0 and θ(t) are
chosen as 0 and 0.5 sin t, respectively. Fig. 2.6 shows that the estimation of
the parameter is uniformly, ultimately bounded with satisfactory accuracy.

Remark 7. For a real system, the positions and/or the velocities are
usually chosen as system outputs. However, sometimes, the linear combi-
nation of the position and velocity are taken as system outputs. Physically,
such an aggregation of the output might arise in some real systems [69, 70],
for example, certain remote-control applications where the number of
transmission and receive lines/frequencies are limited [69].

6 CONCLUSION

In this chapter, an adaptive observer design for a class of nonlinear,
large-scale interconnected systems with unknown TVPs has been pro-
posed based on the Lyapunov direct method. The unknown parameters
vary within a given range. Aset of sufficient conditions has been developed
to guarantee that the observation error system, with the proposed adaptive
laws, is globally, uniformly bounded. The states of the designed observer
are asymptotically convergent to the original system states. Therefore, from
the state estimation point of view, the designed observers are asymptotic
observers. Case study examples on a coupled inverted pendulum system
and a quarter-car suspension show the practicability of the developed
observer scheme for nonlinear interconnected systems.
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