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ABSTRACT.  Electromagnetic acoustic transducers (EMATs) have been used in pitch-catch manner 
to identify surface cracking in aluminium bars and rails. The differences between signal enhancement 
due to interference produced by normal (90⁰) and angled cracks in B-scans were utilised to classify 
them in order to decide appropriate depth calibration curve for depth estimation. In addition, the B-
scans were also used to determine the presence of any surface defects. The B-scans were input into 
image processing algorithm that select the best features and use it for training and recognising similar 
pattern in other B-scans. 
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INTRODUCTION 
      
     The presences of surface cracking in many metal structures raise the issue of their 
integrity. If not detected and treated at early stages, they are potentially causing disastrous 
consequences to human being and the environment [1-3]. For instance, gauge corner 
cracking (GCC), resulting from rolling contact fatigue (RCF) arise in rail tracks due to a 
combination of high normal and tangential stresses between wheel and the rail. GCC starts 
growing at shallow angle (20⁰-30⁰) to the surface to a few milimetres deep into the rail and 
potentially break it [1]. On the other hand, stress corrosion cracking (SCC), is a result of 
conjoint action of stress and corrosive environment [2]. It normally occurs in pipes, 
pressure vessels, steam-turbines and welding joints. Meanwhile, in manufacturing and 
steel casting industry the effect of chemical, process and engineering parameters contribute 
to the presence of surface defects which affects the quality of the product [4]. Clearly, the 
consequence of surface defects on these areas is catastrophic. Thus, a technique or process 
of detecting and identifying the surface cracking is paramount. 
   Standard ultrasonic method to inspect surface defects employs piezoelectric transducers 
to transmit and receive ultrasonic signal in pulse-echo mode. Piezoelectric transducers 
require a couplant such as gel or water to transfer the vibration to the test specimen. This 
becomes a problem when the environment has to be kept dry and clean during the 
inspection. Electromagnetic acoustic transducers (EMATs) works through different 
mechanism compared to piezoelectric. It is a contactless method which means EMATs can 
operate at a few milimetres stand-off from the sample and require no couplant to transfer 
the vibration [5, 6]. These can provide a clean contactless method that is potentially can be 
use for online high speed inspection. Besides that, the broadband nature of the signal 
generated by EMATs provides a wide range of depth it can probe into. 
   Current research shows interesting features in B-scans when scanning over surface 
angled cracks using EMATs in pitch-catch mode. Within close proximity of the crack, the 



 
 

signals are enhanced but it is for much longer period than for normal cracks [7]. These 
features can be spotted through human observation, but it requires expertise and long 
working hours which is not reliable. Thus, image processing of the B-scans that executes 
automated classification of images helps to recognise the enhancement patterns and can be 
incorporated in the inspection system to increase its operation speed. 
     The main concept is, given a dataset consisting of images each of which has been 
tagged with one or more classes, to develop a classification program that will take a new 
image of that type and allocate it to one of the classes. Typically, this is done by a machine 
learning algorithm [8]. Machine learning algorithms take datasets and automatically 
construct a model in the form of, for example, a decision tree or list of rules, or a more 
complex model such as a computer program. 
     One of the more challenging aspects of this process is deciding which features of the 
image to extract to use as inputs to the classification algorithm. Raw pixel values are 
usually too numerous and too fine grained to offer a sensible set of inputs to the classifier. 
One approach is for an expert in the kind of images being studied to provide a set of 
features, and for bespoke programs to be written to extract those features. This is complex 
and time consuming, and dependent on the expert's knowledge. More recently, a number 
of authors have explored methods which apply machine learning methods to this feature 
extraction step, as well as to the classification itself [9-11]. These have typically been 
based on evolutionary algorithms, i.e. algorithms that take their inspiration from biological 
evolution. 
 
ULTRASOUND TECHNIQUE 
 
METHOD 
 
     EMAT generates ultrasonic waves in electrically conducting material via Lorentz 
mechanism and via magnetostrictive mechanism in magnetic material [6]. The principal 
method works in pitch-catch mode, where one EMAT with thick wire coil generates 
ultrasonic waves while another EMAT with thin wire coil receive the signal at a distance 
away. Since the main concern of this experiment is to detect surface cracks, the receive 
EMAT was specifically made to be more sensitive to surface waves. The combination of a 
pulse generator and the EMAT produce broadband ultrasonic waves ranging from 50-
500kHz that has a centre frequency around 200kHz. At these frequencies, the surface 
waves generated are mainly Rayleigh waves since the thickness of the sample used are 
large enough. Rayleigh will be affected much by the surface cracks depending on the 
wavelength, hence it is vital to know its arrival time from the EMATs separation and its 
phase velocity in particular material. The phase velocity was referred from reference [12]. 
     There are two ways of how the “pitch-catch” method was implemented. In preliminary 
experiments, a generation EMAT is fixed at 200mm from the surface crack opening corner 
while a receive EMAT is scanned with 0.5mm scan step away on the sample surface that 
contains cracks as shown in Figure 1(a). To get a strong signal, the generation EMAT was 
in contact with the sample while a layer of acetate with a line drawn on it was attached 
between the receive EMAT and the sample to mark the centre of the coil. In the second 
method, a trolley was used to hold both EMATs at 1mm stand-off from the sample surface 
and also fixing the separation between the EMATs. The pair of EMATs mounted on the 
trolley works as a unit and scanned on the sample surface. In order to characterise within 
close proximity of the surface defects, the unit is scanned with 0.5mm scan step. 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
     
      In order to simulate real life surface cracking such as GCC, a number of sample was 
made from aluminium bars with a few machined slots on the surface. Each slot has 1mm 
width and far enough from each other to allow for scanning using trolley and minimise the 
probability of reflections. The slots are inclined from the surface with angle, θ which range 
from normal, 90⁰ to as shallow as 18⁰ from the surface and the depth range from 0.5mm to 
20mm.The actual lengths of the slots depend on θ and depth. In addition to aluminium 
bars, experiments have been done on a test rail track and on a section of rail track removed 
from service containing transverse cracks and GCC. The test rail track contains three 
clusters of electrical discharge machining (EDM) notches. Each cluster contains three 
notches at 25⁰ of depth 2mm, 4mm and 10mm respectively. The only difference between 
the clusters is the separation between the notches which are 5mm, 10mm and 15mm each. 
 
RESULTS 
 
Normal and angled cracks 
 
     Surface cracks behave like a low-pass filter, where it blocks short wavelength Rayleigh 
wave and let longer wavelength wave pass through. When the EMATs are fixed on a 
trolley and scan over the sample surface, the amplitude of Rayleigh waves drop when it 
pass over a slot. The drop in amplitude was used for depth gauging by plotting normalised 
amplitude as a function of depth as shown in Figure 2. Normalised amplitude is defined as 
the amplitude at a particular point divide by the amplitude over a crack-free section. The 
depth calibration curve was plotted using the data recorded from scanning over six normal 
slots with various depths. As it shown, a negative exponential curve represents the data 
trend as the depth increases. This curve can be used to determine the depth of unknown 
cracks on the same material by interpolating their normalised amplitude. 
     However, when the data from angled slots are used to plot the depth calibration curve, 
the results shows that they are angle dependent. For example, Figure 2(b) shows the curve 
produced from 45⁰ slots scans trace on the curve produced from normal slots scans. It 
shows that there is a discrepancy between the two curves. For given normalised amplitude, 
the 45⁰ curve suggesting a much deeper slot compared to the normal slots curve. This 
could lead to a large error when estimating the depth of unknown crack. Thus, it is vital to 
know the orientation of the crack before using the right depth calibration curve. 
 
 
 
 
 

 
 Figure 1 Pitch-catch mode of scanning the EMATs on aluminium bar containing machine slots (a) Scanning 
detection EMAT away from fixed generation EMAT (b) Fixing both EMATs on a trolley while scanning. 
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Increasing separation of EMATs  
 
     The generation EMAT was fixed at 200mm from the slot opening and the detection 
EMAT was scanned from 150mm to 250mm away from the generation one with 0.5mm 
scan step. The scan was conducted using a stepper machine which controlled by a Labview 
program. At each position on the sample surface, the program records 20 signals and 
calculate the average. This helps to reduce noise from the stepper machine. Data recorded 
through the Labview program were analysed in IgorPro to generate B-scan. In B-scan, the 
grayscale represents the amplitude of the signal as shown in Figure 3. It runs from white 
(maximum positive) to black (maximum negative). Vertical axis shows the position of the 
detection EMAT relative to the slot opening while horizontal axis shows the arrival time. 
Rayleigh waves are shown by the brightest and darkest line indicated in region B. The B-
scans show that there is a reflection of Rayleigh waves in region C. For normal slot, as the 
detection EMAT reaching the close proximity of the slot, these two waves start to interfere 
to each other and producing enhanced signals in region A. The position of the slot can be 
estimated to be about 3mm from where the interference occurs and when the reflections 
disappear i.e. between 0.197m and 0.200m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 (a) Traces showing Rayleigh waves recorded from sample surface containing no slot, 5mm and 20mm 
normal slot (b) Depth calibration curve based on the amplitude measurement for normal (90⁰) and 45⁰ slots. 
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Figure 3 B-scans of two 5mm deep machine slots on aluminium bar (a) Normal (b) 22.5⁰. 
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     On the other hand, the B-scans from angled slots show there are extra enhancement 
following the interference. For instance, Figure 3(b) shows the B-scan for a 5mm deep 
22.5⁰ slot. The mechanism behind the extra enhancement in region D is partly due to mode 
converted surface skimming longitudinal waves generated at the crack corner and partly 
due to interference of incident and reflected Rayleigh waves [13-15]. The differences in 
the enhancement pattern have been used as criteria to classify the type of the slots. 
 
Fixed EMATs separation and scan using trolley 
  
     A pair of EMATs fixed on a trolley was scanned over various sample surfaces 
containing defects. In this case, the separation between the EMATs is fixed, hence incident 
Rayleigh waves arrive at the same time in the B-scans. As expected through the findings of 
preliminary experiment, the extra enhancement pattern have been observed when either 
EMAT is above an angled slot or crack. For instance, Figure 4(a) shows the B-scans of the 
test rail track containing three clusters of EDM notches. The presences of the clusters are 
indicated by six horizontal alternating black and white lines. The signals are enhanced 
whenever either EMAT pass over a cluster of notches. Thus, there are two lines for each 
cluster indicating when the generation or detection EMAT passing over. 
     Figure 4(b) shows the B-scan of a section of real rail tracks removed from service. As it 
shows, it is noisier than the scan made over aluminium samples. The amplitude of incident 
Rayleigh waves changes with the scan distance due to corrosion on the surface that varies 
the lift-off of EMATs. If the amplitude drops, it can be mistakenly understood as a small 
crack according to amplitude measurement. However, the results from the B-scan will 
indicate that is just a change in lift-off. Hence, unnecessary treatment of that section can be 
avoided. 
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Figure 4 B-scans from (a) Test rail containing Electrical Discharge Machining notches and (b) Real rail defects. 
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IMAGE PROCESSING 
 
     The B-scan images are put into classes depending on presence/absence of defects and 
on defect type, either normal or angled. There are two major parts in the image processing 
package for the B-scans. First, a main program extracts features from a set of images and 
creates values associated with each image to form attributes. In the second part, the 
attributes are use for classification using an open source called Weka. The main program 
has been set up to read a set of B-scans from disk which is going to be classified. At the 
moment, there must an equal number of images from each class. There are 30 images in 
total, with 15 being normal cracks and 15 being angled cracks. The main program runs the 
images through a series of image processing steps, themselves are miniature programs. At 
the end of these, the miniature program outputs a numerical value. Therefore, for each 
miniature program, there are 30 values associated with 30 images. The quality of these is 
measured, and a new set of programs generated by mutation process. This is iterated many 
times in a process known as genetic programming. The representation of the program is in 
the form of mixture of functions that process images and mathematical functions, as 
illustrated in Figure 5. 
     The complete set of values for all the images is called a ‘feature’, consists of outputs 
from the various runs of the best version of the miniature programs. A number of these 
features are generated by the program, by running the genetic programming process 
multiple times and the collated into a spreadsheet in CSV format. Once the CSV file is 
generated, they are used as input for the classification algorithm using Weka [16]. Several 
classification algorithms can be ran against the CSV data file (neural network, decision 
tree induction algorithm). What Weka does with the CSV file is comparing the predicted 
classes according to the values of the various features to the actual class designated in the 
CSV file. In this way, we can tell whether the main program is creating features which 
can be used to accurately predict the class of images of this type [11]. So far, these image 
processing algorithms has 100% accuracy in classifying B-scan images from the 
experimental data. However, to get more realistic representation of surface defects, this 
program has to work on larger data set, especially from real crack or simulated machine 
slot on aluminium bars.  
 
 
 
 

 
 

Figure 5 Example of image classification program creating values associated with the input image to form attributes. 

 
 
 
 



 
 

CONCLUSION 
 
     Surface defects can be characterised through the analysis of Rayleigh waves amplitude 
and classification of B-scan images depending on their enhancement pattern. On small data 
set, the automated image classification program has 100% accuracy. In the future, we will 
increase the data set by doing more scans over various angled and normal cracks and 
defect-free surfaces on more realistic samples. The knowledge from this research can be 
implemented in identifying GCC on rails in order to reduce the risk of train derailment in 
the future. 
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