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Abstract 

We introduce a new comparative response format, suitable for assessing personality 

and similar constructs. In this “graded-block” format, items measuring different constructs 

are first organized in blocks of 2 or more; then, pairs are formed from items within blocks. 

The pairs are presented one at a time, to enable respondents expressing the extent of 

preference for one item or the other using several graded categories. We model such data 

using confirmatory factor analysis (CFA) for ordinal outcomes. We derive Fisher information 

matrices for the graded pairs, and supply R code to enable computation of standard errors of 

trait scores. An empirical example illustrates the approach in low-stakes personality 

assessments and shows that similar results are obtained when using graded blocks of size 3 

and a standard Likert format. However, graded-block designs may be superior when 

insufficient differentiation between items is expected (due to acquiescence, halo or social 

desirability). 

 

 

Keywords: Thurstonian IRT model, ipsative data, graded preferences, graded response 

model 
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Ordinal Factor Analysis of Graded-Preference Questionnaire Data 

The most common method to measure personality traits, personal values and similar 

constructs is using Likert-type items (aka ratings). However, when this method is used, 

respondents may endorse all items regardless of their valence (so-called “acquiescence”) or 

trait allocation (cognitive bias of exaggerated coherence, or “halo” effect). In applications 

where these effects are common, the validity of inferences is threatened. In such applications, 

the use of comparative judgments (i.e., asking respondents about their preferences for one or 

another item) is an attractive alternative because comparisons between items facilitate better 

differentiation and calibration thus reducing halo effects (Kahneman, 2011). Also, when 

forced to compare items, one cannot agree with all of them indiscriminately thus alleviating 

acquiescent responding (Cheung & Chan, 2002).  

Preferences can be expressed as choices among two items, and as rankings or partial 

rankings among three or more items. Data collected by this method represent binary choices 

involved for each pair of items within a set. Simple choice, however, is not the only way of 

expressing preferences. We may want to obtain quantitative information about the relative 

merits of items within the set. For example, we may ask respondents to distribute a fixed 

number of points (say, 100) between the items, resulting in so-called compositional data 

(Brown, 2016b). Or, we may ask respondents to indicate how much they prefer item A to B 

using a number of ordered categories, such as “much more – a little more – a little less – 

much less”. Each subsequent category represents diminishing preference for item A and 

increasing preference for item B. Such graded-preference format is the focus of the present 

paper.  

Why would we consider collecting graded preferences, if binary preferences have 

already proven themselves an attractive alternative to ratings, particularly for their resistance 

to response biases? We believe this extension is desirable for at least two reasons. First, test 
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takers often criticize forced-choice formats for the perceived “lack of choice” when presented 

with items that either all apply to them or none apply; as one test taker put it “…responding 

correctly was impossible because it forced a choice between equally ranked options” 

(Bartram & Brown, 2003). Allowing the test takers to indicate the extent of their preference 

could increase their engagement and the face validity of the questionnaire. Second, scores 

derived from forced-choice responses (representing binary choices among pairs of items) 

generally have lower reliability than scores obtained from Likert ratings of the same items. It 

is easy to see when considering a simple choice between two items A and B, which can result 

in only one of two possible outcomes: either A is preferred to B or otherwise. Clearly, such a 

binary variable contains less information than Likert ratings of the same two items using, say, 

5 ordered categories. More information can be obtained per item in forced-choice tasks when 

items are combined in larger blocks (Brown & Maydeu-Olivares, 2011); however, blocks of 

4 items still yield lower reliability than the 5-point Likert scales (Brown & Maydeu-Olivares, 

2013). As a result, more items are needed in general in forced-choice questionnaires to reach 

the same precision of measurement as their Likert-scales counterparts. The additional 

information obtained from every comparison by asking participants to quantify the 

preferences may help solve this problem. 

How would we score a questionnaire composed of graded-preference items?  The 

simple summative schemes, where preference for one item adds points to that item while 

decreasing by the same amount the points awarded to the other item will result in ipsative 

scores. Ipsative, or relative-to-self scores, are problematic for interpersonal comparisons and 

preclude application of standard psychometric analyses (Brown & Maydeu-Olivares, 2013; 

Clemans, 1966; Closs, 1996; Dunlap & Cornwell, 1994). However, recent advances in 

modeling forced-choice data  (Brown & Maydeu-Olivares, 2011b, 2012; Maydeu-Olivares & 

Brown, 2010), which have enabled proper scoring of personal attributes without artefacts of 
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ipsative data, have not yet been extended to graded comparisons. The present paper aims to 

fill this gap. The objectives of this paper are as follows. The first objective is to introduce a 

response format for gathering measurements on latent attributes using graded comparisons. 

We refer to this new format as graded blocks. In graded-block designs, individuals are 

presented with pairs of items and are asked to indicate the extent to which they prefer one 

item to the other (or the extent to which one item describes their personality or attitudes better 

than the other item) using a graded scale. The second objective is to propose a model suitable 

for such data. Such a model needs to take into account: a) the ordinal and comparative nature 

of the data, b) dependencies when the same item is administered in more than one pair, c) 

potential intransitivity of responses to pairs involving the same items (an individual may 

prefer A to B, and B to C, but not prefer A to C). The third objective is to provide the item 

and test information functions suitable for the proposed model. Armed with such a model, 

researchers may analyze existing graded-preference data, design optimal graded-block 

questionnaires, or infer the expected properties of their questionnaires before data are 

gathered.  

The remainder of this article is organized as follows. First, we describe the graded-

block design. In a nutshell, items are first organized into blocks of n items (the block size n 

can be 2, 3, 4, etc.). All possible pairs are drawn from items within each block. Then, the 

resulting pairs of items are administered using a graded scale. Next, we describe a model 

suitable for these data. The model is based on Thurstone’s (1927) law of comparative 

judgment, where utilities of items under comparison are linked to graded preference decisions 

via a threshold process to accommodate ordinal data. We show that the proposed model is an 

ordinal factor analysis model with specific constraints, and it can be estimated using standard 

software such as Mplus (Muthén & Muthén, 2016). Since ordinal factor analysis models 

belong to the general class of IRT models, in technical appendices, we provide the item and 
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test information functions. Our derivation takes into account the inherent multidimensionality 

of responses when items measuring different attributes are compared, and the fact that it is 

impossible to estimate the latent traits separately in such designs. We provide R functions to 

compute the item and test information, allowing computation of standard errors for estimated 

scores, and reliability estimates. To illustrate the graded-preference model, we provide an 

empirical example, in which the Five Factor markers (Goldberg, 1992) are measured using 

two alternative response formats: standard Likert ratings, and graded blocks. We conclude 

with a general discussion and a set of recommendations for applied researchers.   

The Graded-Block Design 

In forced-choice questionnaires, items are uniquely assigned to blocks of size n, and 

respondents are asked to provide a ranking or a partial ranking of the items within the blocks. 

In a graded-block design, items to be compared with each other are still drawn from within 

blocks, but they are presented as pairs to enable graded comparisons. For each pair, 

respondents are asked to express the extent of their preference for one item or the other using 

several graded categories. For instance, they may prefer item A “much more” or “slightly 

more” than item B, be ambivalent about items A and B, or they may prefer item B “slightly 

more” or “much more” than item A. 

 Much 

more 

Slightly 

more 

About the 

same 

Slightly 

more 

Much 

more 

 

Item A  X    Item B 

If the block size is n = 2, the two items from each block are simply presented as one 

pair. If the block size is n  3, all possible pairs of items are drawn from within each block, 

and the resulting ñ = n(n  1)/2 pairs per block are presented to respondents one at a time. In 

this case, the same items will appear in more than one pair, but pairs drawn from the same 

block need not be administered sequentially. Instead, researchers may want to randomize the 
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presentation of such pairs across the questionnaire to minimize the carry-over effect. 

Importantly, the model for such designs needs to take into account these patterns of within-

block dependencies arising from the repeated item use.  

The reason we might want to draw paired comparisons from blocks of 3 or more 

items is to increase the amount of information obtained per one item. Indeed, when pairs are 

drawn from blocks of size n = 2, the questionnaire has half the number of tasks than a 

standard Likert-type questionnaire in which items are presented one at a time. When pairs are 

drawn from blocks of size n = 3, there are ñ = 3 pairs arising from each block, and the 

questionnaire has the same number of tasks as a standard rating task. When items are drawn 

from blocks of size n = 4,  there are ñ = 6 pairs arising from each block and the questionnaire 

contains more tasks than a standard rating task, and therefore may gather more information 

per item than a questionnaire created from smaller blocks.  

To code the graded preferences appropriately, we will always consider the degree of 

preference for the first item in the pair {i, k}, item i, arbitrarily using descending integers
1
, 

for example: 

  ,

5, if     is preferred "much more" than 

4, if     is preferred "slightly more" than 

3,     if    and   are  "about the same"

2,  if     is preferred "slightly more" than 

1,  if      is preferr

i k

i k

i k

y i k

k i

k



ed "much more" than i









 . (1) 

Responses coded in this way are the observed outcomes in graded-preference analysis. 

It is easy to see that the observed outcomes are ordinal variables.  

                                                 
1
 The coding 5, 4, ..., 1 is consistent with previous work on factor analysis of binary outcomes (Maydeu-

Olivares & Böckenholt, 2005), in which preference for the first stimuli in a pair is coded  1 and for the second is 

coded 0. Should the ordinal outcomes be coded as ascending integers 1, 2.., 5, all factor loadings will have signs 

opposite to the ones in the present paper. 
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Modeling Graded-Preference Questionnaire Data 

To model graded preferences when items are presented in pairs, we use the law of 

comparative judgment (Thurstone, 1927), which attributes preference decisions to the relative 

utilities (or psychological values) of items under comparison. Thus, person j prefers item i to 

item k if his/her utility for item i (tji) is greater than the utility for k (tjk). Therefore, the 

unobserved difference of utilities  

 
*

{ , }j i k ji jky t t   (2) 

is the fundamental quantity in the analysis, which determines the observed preference 

decision yj{i,k} via a threshold process (Böckenholt & Dillon, 1997; Maydeu-Olivares, 2002): 

  

*

{ , } { , } 1

*

{ , } 2 { , } { , } 1

,

*

{ , }1 { , } { , }2

*

{ , } { , }1

,         if   

1,    if   

     ...

2,         if   

1,          if   

j i k i k C

i k C j i k i k C

j i k

i k j i k i k

j i k i k

C y

C y

y

y

y



 

  


    


 


   

  

. (3) 

According to this threshold process, person j selects one of C graded options depending on 

the size of the latent difference 
*

{ , }j i ky , and a set of C  1 thresholds.  

However, when graded paired comparisons are drawn from blocks of three or more 

items (n  3), respondents need not be consistent in their pairwise preferences, possibly 

yielding intransitive patterns of preference. That is, they may prefer item i to item k, item k to 

item l but not prefer item i to l. Intransitive pairwise preferences can be accommodated by 

adding an error term to the difference of utility judgements (Maydeu-Olivares & Böckenholt, 

2005; Takane, 1989): 

 
*

{ , } { , }j i k ji jk j i ky t t e   . (4) 
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The next section describes the distributional assumptions for the unobserved utilities 

and intransitivity error terms that are necessary to model graded preferences. 

Ordinal Factor Model for Graded-Block Preferences  

Consider a questionnaire containing b blocks of n  2 items where items are to be 

presented in pairs using a graded scale. Since for each block ñ = n(n  1)/2 item pairs can be 

obtained, there are bñ ordinal responses for each respondent.  

In matrix form, the model can be written as follows. Let y be a bñ vector of observed 

ordinal variables, which are related to the corresponding latent utility differences y
*
 via the 

threshold process (3). The bñ vector of latent utility differences y
*
 is given by (4)  

 
*  y Αt e , (5) 

where t is a bn vector of item utilities, A is a bñ  bn block-diagonal design matrix of 

contrasts, and e is a bñ vector of pairwise intransitivity errors needed when block size n  3 

(these are zero when block size n = 2 since there cannot be any intransitivity in a single pair). 

The errors e are assumed to have mean zero and uncorrelated with the utilities. They are also 

assumed uncorrelated with each other so that their covariance matrix 
2  is diagonal. The 

block-diagonal matrix A contains contrasts of utilities arising from each block. For n = 2, the 

diagonal entries contrast the first item in a pair with the second  2 1 1 A ; and for n = 3 

and n = 4, respectively, the contrasts are pairwise:  

 3

1 1 0

1 0 1

0 1 1

 
 

 
 
  

A ,     4

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

 
 


 
 

  
 

 
 

 

A . (6) 
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Because questionnaires are designed to measure some personal attributes (latent 

traits), we assume that the item utilities depend linearly on a set of d common factors η 

representing the attributes, and the unique factors  

  t Λ ε , (7) 

where  is a bn  d matrix of the factor loadings. The factor analysis model assumes that the 

common and unique factors have mean zero and they are uncorrelated. The unique factors are 

assumed uncorrelated so that their covariance matrix 
2  is diagonal. The common factors 

may be correlated among themselves, with covariance matrix  .  

Putting together the first-order structure (5) and the second-order structure (7),  

 * ( )      y Α Λ ε e ΑΛ Αε e . (8) 

Assuming that the common and unique factors, as well as the pairwise intransitivity 

errors are normally distributed, the latent utility differences *
y are also normally distributed. 

Then, their mean is zero and their covariance matrix is 

  2 2

*y
   Σ A ΛΦΛ Ψ A Ω . (9) 

The model just described is an extension of the Thurstonian factor model for 

polytomous data (Maydeu-Olivares, 2002) to items presented in more than one block. It is 

also an extension of the Thurstonian IRT model designed for forced-choice blocks (Brown & 

Maydeu-Olivares, 2011) to ordinal data with possibly intransitive preferences.  

Model Estimation  

We recognize (9) as the covariance structure of a second-order factor analysis model 

where A, the matrix of fixed contrasts, represents the first-order factor loadings of the 
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pairwise outcomes on their respective utilities, and  represents the second-order factor 

loadings of the utilities on their respective personal attributes. Since the latent utility 

differences y
*
 are assumed to be normally distributed and the observed variables are ordinal, 

the model is akin to an ordinal (second-order) factor analysis and it may be estimated from 

polychoric correlations. Importantly, when items are presented one a time as in standard 

Likert type, A is an identity matrix and the model reduces to the standard ordinal factor 

analysis model.  

To enable estimation of the covariance structure (9) from ordinal data, the latent 

utility differences y
*
 are standardized using  *

* * *  
y

z D y Dy , where 

  *

1

2
Diag

y



D   is a diagonal matrix with the reciprocals of the standard deviations of y
*
 

in the diagonal (Maydeu-Olivares, 2002; Maydeu-Olivares & Böckenholt, 2005). Therefore 

standardized latent difference responses z
*
are multivariate normal with mean zero and  

correlation matrix  

  *y
  D D . (10) 

If we organize the thresholds in (3) in a bñ × C matrix ,  then the thresholds relating 

the standardized latent utility differences z
*
 to the observed ordinal variables y are 

   D . (11) 

First, the sample thresholds ̂  and polychoric correlations ̂  are estimated. Then the 

model parameters are estimated from these sample statistics using unweighted or diagonally 

weighted least squares (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009). This can be 

accomplished using standard software such as Mplus (Muthén & Muthén, 2016). When using 

this program, researchers only need to specify the first-order structure (5) and the second-
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order structure (7), as Mplus automatically implements the constraints (10) and (11). Writing 

Mplus code can be tedious when block size is greater than 2, as many utility contrasts (matrix 

A) have to be specified. An Excel macro that automates writing the full code, including the 

necessary identification constraints described below, is available from the first author’s 

webpage. 

Estimable Parameters and Identification 

Although items measuring different personal attributes are often combined in blocks, 

most questionnaires are constructed so that each item measures only one attribute (utility 

factor loadings  forming “independent clusters”; McDonald, 1999). We provide 

identification conditions for this case.  

As in any other factor analysis model, we begin by setting the metrics for the common 

factors by setting their variances to one so that  is a correlation matrix. However, due to the 

categorical nature of the data, the metrics of the unique factors need to be set as well. To do 

so, in blocks of size n  3, it suffices to set the uniqueness (i.e., variance of the unique factor) 

of just one item per block to an arbitrary constant. It is usual to set the uniqueness of the last 

(or the first) item in each block to one. These are the constraints needed to identify the 

elements of 
2

Ψ .  

The diagonal elements of 
2  capturing the degree of intransitivity in pairwise 

comparisons can be freely estimated. However, in this case the model has a large number of 

parameters and may be nearly non-identified in applications (the standard errors for some 

parameters may be poorly estimated). To reduce the number of parameters, Maydeu-Olivares 

and Böckenholt (2005) suggested setting all intransitivity variances equal, i.e., 2 2  I .  
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A special case arises when the block size is n = 2. In this case, 2  0  as there can be 

no intransitivity. Also, the two items’ unique variances cannot be identified independently, so 

we set 
2 Ψ I .  

A further special case arises when exactly two attributes (d = 2) are measured using 

multidimensional pairs (n = 2). Because each pairwise ordinal outcome loads on both factors, 

this is essentially an exploratory factor model, and additional identification constraints need 

to be imposed on some factor loadings (Brown & Maydeu-Olivares, 2012).  

Person Score Estimation 

After the model parameters have been estimated, factor scores for each person may be 

estimated using maximum likelihood or, alternatively, Bayesian estimation with the 

multivariate normal prior with covariance matrix . Either the mean of the posterior 

distribution can be estimated (expected a-posteriori or EAP), or the mode (maximum a-

posteriori or MAP).  The former can be used in applications with one to three measured 

attributes; the latter is recommended in applications with many measured attributes. The 

software we use to fit the graded-preference model, Mplus, conveniently provides MAP 

scores. When blocks are of size n = 2, factor scores cannot be estimated using the ordinal 

factor model with covariance structure (9) because 2 Ω 0  (responses cannot be intransitive). 

In this case, the second-order factor structure (9) needs to be reparameterized as a first-order 

structure by using  

  A      and      
2 2 2 A A Ω  , (12) 

resulting in the Thurstonian IRT model for ordinal data 

 
2

*y
 Σ ΛΦΛ Ψ .  (13) 
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Information, Standard Errors and Reliability 

Information and standard errors. In questionnaires measuring personal attributes, it 

is of interest to evaluate the amount of information that every graded comparison contributes 

to the measurement of the attributes, and the amount of information that the questionnaire 

provides as a whole. Because the graded blocks are typically designed to compare items 

measuring different attributes, the outcomes of comparisons are multidimensional by design, 

even when items under comparisons are unidimensional. Because test developers typically 

employ balanced designs in which numbers of comparisons between items measuring 

different attributes are approximately equal, any subset of graded comparisons indicating a 

particular attribute will also indicate other attributes. In such inseparable designs, no single 

attribute can be estimated without estimating the whole model. Inevitably then, the 

measurement errors of all attributes are correlated – and likely highly correlated – therefore 

not only their variances (as reciprocals to test information functions) but also covariances 

must be considered (McDonald, 1999). To complicate things further, the outcomes of graded 

pairs arising from blocks of size n  3 indicate not only the common factors (i.e. attributes), 

but also the unique factors (i.e. utility errors). And since some of the unique factors and 

common factors are indicated by the same graded pairs, their measurement errors are also 

correlated. In this situation, covariances of measurement errors for all the independent 

variables defining the latent space (the common factors and the unique factors) must be 

considered. 

In Appendix A, we provide the item characteristic functions for graded preference 

models, which are necessary for computation of item information. In Appendix B, we provide 

a complete solution for computing information and standard errors for graded-preference 

questionnaire data, which obviously also applies to binary preferences (i.e. forced choice). 

Past solutions for computing information in forced-choice questionnaires (Brown & Maydeu-



OFA OF GRADED PREFERENCES 15 

 

Olivares, 2011; Maydeu-Olivares & Brown, 2010) were incomplete as they only partially 

accounted for multidimensionality by controlling for relationships between traits using 

directional information. Moreover, they did not take into account the correlated measurement 

error in questionnaires using multidimensional comparisons, and in unidimensional blocks of 

three or more items. The solution proposed in Appendix B computes the item and test 

information functions as Fisher information matrices, fully accounting for the inherent 

multidimensionality in the data, and can be applied to both graded and binary comparative 

designs. To enable implementation of this solution in practice, as an online supplement to this 

paper, we provide R functions for computing item and test information from the model 

parameters and MAP scores estimated in Mplus, as well as a sample R code for estimating 

standard errors (SEs) for these scores. 

Reliability. While the availability of SEs for the estimated trait scores of each person 

is an advantage for individual diagnostics, summarizing the precision of measurement of the 

questionnaire for a range of trait values may also be of interest. However, if in 

unidimensional IRT models a curve depicting either the test information function (or the SE 

function) is a good summary, in the inherently multidimensional Thurstonian models with 

non-separable designs, trait information may be conditional on all other measured traits (and 

on some utility errors when the block size is n  3). In this case, instead of exact functions, 

sample-based scatter plots of SEs against the trait of interest, such as one illustrated in Figure 

2 panel b, can be helpful.  

Another common method of summarizing SEs is the empirical reliability index, 

which is the ratio of true score variance to the sum of true and error variance estimated in a 

sample. As suggested in Du Toit (2003) for Bayesian EAP or MAP scores
2
, which are 

                                                 
2
 This method for computing reliability differs from previous published works on Thurstonian IRT model, 

where the true score variance was estimated as the difference between the observed MAP score variance and the 

error variance. Simulations studies show that the method presented here yield results closer to the true values; 

the improvement is more noticeable when the Bayesian estimator shrinks score estimates significantly.  
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regressed estimates of latent traits with the shrunken distribution, the true score variance is 

best estimated directly from the variance of the EAP or MAP score, say  ˆvar MAP , which is 

conveniently printed in Mplus output. The error variance is the mean of the squared standard 

errors estimated for the sample (for example, using the supplied R code), yielding 

 
 

   2

ˆvar
ˆ

ˆ ˆvar

MAP

MAP MAPSE


 

  
. (14) 

Empirical example: Measuring the Five Factors of Personality Using Graded 

Preferences 

Participants and Materials 

Five-hundred-and-ninety-five undergraduate psychology students from the University 

of Barcelona completed a questionnaire measuring the Five Factors of personality online in 

return for a comprehensive feedback report. The sample comprised 71.4% female, with 

average age of 22.8 years (standard deviation of 7.9). 

For this study, we modified the Spanish version of the Forced-choice Five Factor 

markers questionnaire (FCFFM; Brown & Maydeu-Olivares, 2011a) with respect to the 

response format only. The FCFFM consists of 60 items selected from the International 

personality Item Pool (IPIP), more specifically from the subset measuring the Five Factor 

markers (Goldberg, 1992). Each factor is measured with 12 items. The items are organized in 

b = 20 blocks of three items, with the restriction that within a block no two items measure the 

same factor. We presented the items from each block as ñ = 3 separate paired comparisons, 

and respondents had to indicate their preference for the item on the left or on the right using 

five graded options: “much more – a little more – equal – a little more – much more”. To 

counteract the carry-over effect in paired comparisons with repeated items, we randomized 
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the presentation of pairs, so that the pairs from the same block did not appear sequentially. In 

total, respondents were presented with b × ñ = 60 graded paired comparisons.  

After completing the graded preferences, participants were presented with the same 

60 items using a standard Likert format, in which they rated the items according to the extent 

they represented their personality using a 5-point rating scale “very well – quite well – 

sometimes well, sometimes badly – quite badly – very badly”.  

Analysis 

Likert format. A confirmatory factor model with five latent correlated factors 

illustrated in Figure 1 (panel a) was fitted to 60 observed item ratings coded from 5 (“very 

well”) to 1 (“very badly”). An ordinal factor analysis model was fitted to these data. Every 

one of the Five Factors was indicated by 12 items and no item was loading on more than one 

factor. Thus, one factor loading and four thresholds were estimated per item. In total, this 

model estimated 60 loadings, 4  60 = 240 thresholds, and 10 inter-factor correlations. This 

model is equivalent to a five-dimensional Samejima’s (1969) normal ogive Graded Response 

Model. 

-------------------------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

-------------------------------------------------------------- 

Graded-block format. The ordinal factor model for graded-block preferences 

illustrated in Figure 1 (panel b) was fitted to the 60 observed outcomes of paired graded 

preferences, coded from 5 (“much more” preference for first item in the pair) to 1 (“much 

more” preference for second item). Since the observed variables were results of comparisons 

of two items, each ordinal outcome was linked to two latent utilities of items under 

comparison; the first utility positively influencing the outcome, and the second utility 
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negatively with the effects fixed to unity as per contrast matrix A3 in (6). The utilities, in turn, 

were indicators of five latent correlated factors (the Five Factors of personality). The same 

factorial structure as in the model for Likert ratings was applied to the utility variables: each 

factor was measured by 12 utilities and no utility was loading on more than one factor. Thus, 

one factor loading (pertaining to the item utility) was estimated per item and four thresholds 

were estimated per graded pairwise outcome.  Since every block of three items was presented 

as 3 paired comparisons, transitivity of preferences could not be guaranteed (as it would be in 

rankings), necessitating an error term for every observed preference outcome. Because it is 

reasonable to assume an approximately equal degree of intransitivity in all paired 

comparisons (Maydeu-Olivares & Böckenholt, 2005), all 60 variances of the pairwise errors e 

(the diagonal elements of 
2

Ω ) were constrained equal. To set the metric of the unique factors, 

we fixed the uniqueness of the last item in each block to one (thus fixing 20 of the 60 

diagonal elements of 
2

Ψ ). In total, this model estimated 60 loadings, 4  60 = 240 thresholds, 

10 inter-factor correlations, 60  20 = 40 uniquenesses, and 1 intransitivity variance 

parameter common to all pairs. 

Estimation. Both the Likert and graded-block models were estimated from 

polychoric correlations in Mplus 7.2, using the Unweighted Least Squares estimator with 

robust standard errors (denoted ULSMV). To assess goodness of fit, we considered the chi-

square statistic (
2
), and the Root Mean Square Error of Approximation (RMSEA) with 

values less than .06 indicating good fit (Hu & Bentler, 1999). Recently, it has been suggested 

to reverse the role of the null and alternative hypotheses when assessing model fit. This is 

termed a test of not-close fit (MacCallum, Browne, & Sugawara, 1996) and equivalence 

testing (Yuan, Chan, Marcoulides, & Bentler, 2015), where significant results provide strong 

support for good fit. With this approach, claims can be made regarding an upper bound on the 

size of misspecification (T-size) as measured by the RMSEA; specifically, the upper limit of 
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the 90% RMSEA confidence interval printed by Mplus corresponds to 95% confidence in the 

maximum size of misspecification (Yuan et al., 2015).  In addition to these statistical tests of 

model fit, we also considered a direct measure of discrepancy between the observed and 

model-implied polychoric correlations – the Standardized Root Mean Square Residual 

(SRMR
3
) with values less than .08 indicating good fit (Hu & Bentler, 1999).

 

Person scores and their standard errors. Mplus produced two sets of MAP scores 

on the Five Factors – one based on the Likert responses, and the other based on the graded-

block responses – for each participant. For the graded-block responses, Mplus produced not 

only the trait scores (second-order factors) but also the utility scores (first-order factors). At 

the time of writing, Mplus does not compute SEs for MAP scores. SEs for MAP scores for 

Likert and graded-block formats using respective multivariate normal priors were computed 

using R functions supplied with this article according to the formulas provided in the 

Appendix. (Note that the supplied R functions can also be used to compute SEs of MAP 

scores in the multidimensional ordinal model for Likert items, as it is a special case of our 

graded preference model when n = 1 and the contrast matrix A set to identity matrix).  

We estimated the empirical reliabilities of the Five Factor scores measured in the 

Likert and graded-block models using (14), with the error variance of the MAP scores 

estimated by squaring and averaging the respective SEs across the whole sample. All these 

steps are included in the sample R code supplied with this article. 

Results 

Model fit and parameter estimates. The ordinal factor model applied to the Likert 

ratings yielded 
2
 = 5239 on 1700 df, p < 0.001), a poor fit according to the SRMR = .092, 

and a barely acceptable approximate fit according to the RMSEA = .059 (90% confidence 

                                                 
3
 To obtain the SRMR in Mplus, MODEL=NOMEANSTRUCTURE setting must be used in the ANALYSIS 

command.  
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interval for RMSEA .057-.061). Under the equivalence testing framework, we can be 95% 

confident that the population RMSEA is no more than .061. Exploring potential reasons for 

misfit, we examined the model’s modification indices (MI). Only five modification indexes 

exceeded 100; all of them pertained to cross-loadings. For example, the largest MI (
2
 = 197) 

was for item “I am always prepared” (“Siempre estoy preparado“), which was designed to 

measure Conscientiousness, suggesting a cross-loading on Openness. Judging that allowing 

the suggested cross-loadings would not radically change the model fit or interpretation, we 

retained the original model. The factor loadings of all the Likert items on the personality 

factors were in the expected directions and statistically significant. The model-based 

correlations of the five personality traits for Likert data are given in Table 1, above the 

diagonal.  

The second-order ordinal factor model applied to the graded-block comparisons 

yielded 
2
 = 3874 (df = 1659, p < 0.001), a good fit according to SRMR = .072 and RMSEA 

= .047 (90% confidence interval .045-.049). Under the equivalence testing framework, we 

can be 95% confident that the population RMSEA is no more than .049. The a-priori model 

appeared to fit better to graded-block comparisons than the counterpart model to Likert 

ratings. The factor loadings of all the first-order utilities on the second-order personality 

factors were in the expected directions and statistically significant. The model-based 

correlations between the five personality dimensions in the graded-preference model are 

given in Table 1 (below the diagonal).  

-------------------------------------------------------------- 

INSERT TABLE 1 ABOUT HERE 

-------------------------------------------------------------- 

It can be seen from Table 1 that the correlations yielded by the Likert and graded-

preference models were largely similar; however, the small differences were systematic. The 
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correlations in the Likert model were always stronger (except the Agreeableness-Neuroticism 

correlation, which was weaker in the third decimal place for the Likert data – a clearly 

negligible outlier from this trend). If we reverse the direction of trait Neuroticism, presenting 

it as Emotional Stability, all inter-trait correlations become positive, yielding the average 

correlation of .195 in the Likert model and .137 in the graded-preference model. 

Interestingly, all inter-correlations except those involving Agreeableness, are uniformly 

larger by about .09 in the Likert model. The correlations involving Agreeableness are very 

close in the two models. 

Standard errors and reliability of factor scores. The standard errors and 

reliabilities of the MAP Five Factor scores in the Likert and graded-preference models are 

summarized in Table 2. For comparison, coefficients alpha for sum scores obtained from the 

Likert items are also provided. We see in Table 2 that the MAP scores in both formats were 

highly reliable in the range of .8–.9; all scores were slightly more reliable when the Likert 

format was used (differences in reliabilities around .05). Given the same number of observed 

variables and the same number of graded categories in both response formats, the slightly 

more reliable scores with ratings are to be expected since each rating loaded on one factor 

only, hence providing independent contributions to the reduction of measurement error. 

Figure 2 shows the SEs of MAP scores on Neuroticism, plotted against the actual 

MAP scores, for both response formats. It can be seen that while the Likert data with its 

separable measurement yield a curve, the graded-preference data with its inseparable 

measurement yield a scatter, with a curvilinear tendency but significant dispersion reflecting 

dependencies of the Neuroticism SEs on other variables in the model.  

-------------------------------------------------------------- 

INSERT FIGURE 2 ABOUT HERE 

-------------------------------------------------------------- 
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Convergent validity of the factor scores. MAP estimated scores from the Likert and 

graded-preference measurement models were used to explore the relationships between 

corresponding personality constructs (hetero-method mono-trait correlations), which are 

given in Table 2. The estimated trait scores for the same construct correlated highly, and were 

similar in magnitude to their respective reliability coefficients. The correlation coefficients 

corrected for unreliability (using the empirical reliability coefficients) are provided in 

parentheses after the observed value. Except the trait Agreeableness, for which the corrected 

correlation was .937, the rest of the traits correlated nearly perfectly, suggesting that the same 

psychological constructs were measured regardless of the response format.  

-------------------------------------------------------------- 

INSERT TABLE 2 ABOUT HERE 

-------------------------------------------------------------- 

Conclusions and Discussion  

The present paper introduces an ordinal factor analysis model of graded preferences 

among pairs of items, where the extent of preference for one or another item can be 

quantified in terms of ordered categories such as “much more”, “slightly more”, “about the 

same”, etc. Questionnaires using graded comparisons can be used to assess personality traits, 

motivations, attitudes, and similar constructs. Items designed to measure different constructs 

can be combined to create multidimensional graded pairs. Pairs can be formed by simply 

splitting a pool of items into blocks of two items, in which case no graded pairs have 

overlapping content. However, the pool of items can also be split into  blocks of 3 or more 

items from which all possible pairs are then drawn (we call this “graded-block” design). In 

this latter case, graded pairs drawn from the same block have overlapping content with 

known patterns of dependence. The model we propose for these data is equivalent to an 
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extension of the Thurstonian IRT model to ordered categorical outcome data. The new 

contribution of the present paper beyond extending the family of Thurstonian factor and IRT 

models is the complete solution to the item and test information functions, which are now 

computed as Fisher information matrices and can be applied to both binary and graded 

comparative designs.  

We believe that when used in the right context, grading of preferences can be superior 

to both Likert ratings and binary rankings (forced choice). Graded preferences could replace 

Likert ratings when finer differentiation between judgements is needed, for instance in 

organizational appraisals where halo effects are common and impact the validity of 

inferences (Bartram, 2007; Brown, Inceoglu, & Lin, 2017); or in settings where respondents 

may acquiesce. Graded preferences could also replace forced-choice rankings when the test 

reliability needs to be increased without increasing the number of item-pairs administered. 

Indeed, given a fixed number of items, and all other factors held constant, the use of a graded 

scale over a binary scale is known to increase the amount of information the test provides 

(Maydeu-Olivares, Kramp, García-Forero, Gallardo-Pujol, & Coffman, 2009).  

Graded Preferences versus Likert Ratings 

To illustrate the potential advantages and disadvantages of graded preferences as 

compared to Likert ratings, consider our empirical example where we compared 

measurement of the Five Factors of personality using the two formats. Both designs had the 

same number of items (60), the same number of observed variables (60), and the same 

number of graded options per observed outcome variable (5). As can be seen in Table 2, the 

empirical reliabilities were over 0.8 in both formats; with ratings still slightly outperforming 

graded preferences (loss in reliability for each scale was around 0.05). This small loss was 

due to the multidimensionality inherent to comparative response formats. As explained in the 
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section on Information, since every graded pair contributes to measurement of more than one 

common factor (and more than one unique factor), the measurement errors are correlated. To 

accommodate for this, we evaluate information contribution of every pair to measurement of 

all the relevant common and unique factors using the Fisher item information matrix, a 

procedure common in computerized adaptive testing (CAT) applications using 

multidimensional IRT models. When the measurement errors are correlated, the standard 

errors of the trait scores are generally larger than in the counterpart Likert questionnaires with 

factorially pure items, and reliabilities are consequently smaller.   

However, the slight loss of information in graded pairs compared to Likert ratings 

may well be outweighed by potential benefits in reducing unwanted effects such as 

acquiescence, halo or socially desirable responding. Comparing the inter-trait correlations in 

the Likert and graded-preference models, we noted that the Likert ratings yielded a slightly 

stronger positive manifold of correlations among the five personality traits (with Neuroticism 

reversed to represent Emotional Stability). At the item level, the average model-based 

correlation between utilities (suitably reversed to measure the desirable poles) was again 

greater in the Likert model (.168) than in the graded-preference model (.144). It appears that 

the Likert items elicited utility judgments that were slightly less differentiated than the 

judgements elicited by the graded pairs. Specifically, the Likert ratings of items indicating the 

desirable poles of personality traits were more similar to each other, and so were the ratings 

of items indicating the undesirable poles. This similarity in ratings could not be attributed to 

acquiescence since it adjusted for item polarities. We believe the more likely reason for less 

differentiated utility judgements in the Likert version of the FCFFM was socially-desirable 

responding. The lack of fit and the required cross-loadings in the Likert model also point to 

an additional source of common variance in the ratings, which our a-priori model did not take 

into account. It is outside of scope of the present paper to examine alternative models for 
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Likert ratings, but models exist that incorporate biases as latent “method” variables acting at 

either the item level as in the random intercept model (Maydeu-Olivares & Coffman, 2006), 

or at the response category level as in the scoring functions approach (Falk & Cai, 2016). 

Such models could be used in future research to explore the source and extent of response 

biases.  

We believe that although detectable, response distortions were small in the empirical 

study presented here because by providing participants with personalized feedback report, we 

tried to ensure sufficient motivation not to engage in acquiescence and inattentive responding 

on one hand (Meade & Craig, 2012), and present the true picture of themselves without 

managing impression on the other hand. The high degree of similarity between the results 

obtained from absolute and comparative response formats corroborate findings reported in 

similar low-stakes conditions, for instance in a validation study reported by Brown and 

Maydeu-Olivares (Brown & Maydeu-Olivares, 2013). However, this degree of similarity is 

by no means guaranteed, and is actually unusual in medium- or high-stakes assessments 

(Birkeland, Manson, Kisamore, Brannick, & Smith, 2006; Brown, Inceoglu, & Lin, 2017; 

Schmit & Ryan, 1993). Comparing the internal and external validities of scores derived from 

graded preferences to both Likert ratings and rankings in such contexts would be a good topic 

for further research.   

Graded Preferences versus Binary Preferences (aka Forced Choice) 

To illustrate potential advantages of graded preferences in comparison to binary 

preferences, although we did not collect them in the empirical example presented here, we 

collapsed the first 3 and the last 2 categories in our graded-pairs data to emulate binary-pairs 

data. The resulting empirical reliabilities computed in the way described in the present paper 

but based on two response categories were N = .780,  E = .811, O = .711, A = .731 and C 
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= .755. Comparing these estimates to their counterparts in Table 2, we can see that the binary 

choice yielded the reliability loss of between .07 and .10 compared to the graded preferences. 

This degree of information loss is greater than the loss we observed in using graded 

comparisons instead of Likert ratings. 

Although the information increase is undoubtedly an advantage of graded over binary 

preferences, the use of ordinal categories to grade one’s preferences could potentially open 

the door to response biases we typically associate with Likert scales. In theory, idiosyncratic 

uses of the response categories are possible in the graded-preference format – for example, 

preferring the extreme categories or the middle categories regardless of the item content. 

However, these styles would influence the judgements of utility differences rather than 

utilities themselves. Whether this type of distortion will prove problematic in certain 

contexts, for example cross-cultural research notoriously vulnerable to systematic differences 

in response styles, and how it will compare to the Likert scales remains to be seen and is also 

a good topic for future studies. To conclude, when designed well and used in the right 

context, graded preferences can be an attractive alternative to either Likert ratings or 

rankings. They can have the benefits of rankings in differentiating well between responses, 

and the benefits of ratings in allowing respondents to express the extent of preference, thus 

increasing information and measurement precision. In the present article, we provided tools 

for fitting factor analysis models to graded preference data, estimating person scores that are 

free of problems of ipsative data, and assessing the measurement precision of these scores. 

Equipped with these tools, researchers and test developers can evaluate the performance of 

various questionnaire designs and select the best one for their required assessment context. 

We are looking forward to new developments in this area.  
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Appendix A. Item Characteristic Functions in Graded-Block Models 

When block size n = 2, the intransitivity errors of pairwise preferences 
*

{ , }i ky  described 

by (8) are zero, and the only sources of error in measuring the attributes are the utility unique 

factors i and k with variances i and k respectively. According to the ordinal factor 

analysis model (or equivalently, the normal ogive Graded Response Model, Samejima, 1969), 

which we assume for the threshold process (3), the probability of selecting category above c 

in graded comparison {i, k} is conditional on the common factors only, 
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In the above expression,  cx  is the normal distribution function evaluated at xc, {i,k} 

and {i,k} indicate the row in matrices  and  corresponding to pair {i, k}, and 
2

i and 
2

k

are the variances of the utility unique factors i and k. As explained in the model 

identification section, when n =2, the uniquenesses cannot be identified independently, and 

have to be all set to arbitrary constants, typically 
2 Ψ I .  The threshold  ,i k c

  separates 

category c from category c + 1, and because the categories are bounded between 1 and C, we 

have  
*

, 0
P 1

i k
  and  

*

,
P 0

i k C
 . With this, the probability of selecting category c is 

      
* *

, , 1 ,
P P P

i k c i k c i k c
  . (16) 

When items i and k are factorially simple, measuring attributes a and b respectively, 

the probability (15) simplifies to 
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         ,*

, , 2 2
P , Pr , Φ

ia a kb bi k c

a b a bi k c i k

i k

y c
       

        
   

. (17) 

When block size n  3, the response tendency variable 
*

{ , }i ky  described by (8) is 

determined by the utility common and unique factors, and has the error attributed to 

intransitive preferences. The probability of selecting category above c in graded comparison 

{i, k} is then conditional on both the common and unique factors, 

 

      
   

 

   
   

 

 

, ,
*

, , 2

,

, ,,

2

,

P , Pr , Φ

Φ Φ

i k c i k

i k c i k

i k

i k c i ki k

c

i k

y c

z

  
    
 
 

   
  
 
 

Α t
η ε η ε

ΑΛ η Α ε
. (18) 

In the above expression,  cz  is the cumulative normal function evaluated at zc, 

{i,k} and {i,k} indicate the row in matrices  and  corresponding to pair {i, k}, and 

 
2

,i k
 is the variance of the intransitivity error e{i,k}. In a test with factorially simple items, the 

utilities of items involved in comparison {i, k} are indicators of one factor each – let us call 

them a and b respectively – and the probability (18) simplifies to 

       
 

 

,
*

, , 2

,

P , , , Pr , , , Φ
ia a kb b i ki k c

a b i k a b i ki k c i k

i k

y c
           

           
 
 

. (19) 

Appendix B. Item and Test Information in Graded-Block Models 

Item information. To evaluate the amount of information each observed variable 

(graded pair) supplies about latent factors in the Thurstonian model for graded comparisons, 
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we use Fisher information matrices. The Fisher information matrix for a graded-response pair 

{i, k} in a generic measurement model with r factors F is an r × r matrix 

 
     

 

    
   

2 * * T2 T

, 1 ,,

, * *
1 1, , 1 ,

P PP

P P P

C C
i k c i k ci k c

i k
c ci k c i k c i k c



  

     
 


 

F FF F
I F . (20) 

The latent factor spaces defined by independent latent variables necessary to model 

block sizes n  3 and n = 2, however, differ. While the block size n = 2 requires the factor 

space with the common factors  only as shown in (15), the block size n  3 defines the space 

with the common factors  and unique factors  as shown in (18). Therefore, below we 

provide expressions for Fisher information matrices according to the relevant model. 

When block size n = 2, the latent factor space F in (20) includes only d common 

factors η representing the attributes. Denoting xc the category-dependent argument of the 

cumulative category probability in (15), the partial derivative with respect to any common 

factor a is 

        *

, 2 2
P Φ ia ka

a c a ci k c

i k

x x
 

      
 

η    (21) 

where  cx  is the normal density function evaluated at xc, and ia and ka are the respective 

factor loadings of items i and k on factor a. These factor loadings may of course be zero if 

neither i nor k measure a; only one of these loadings are non-zero if only one of the items i 

or k measure a; and both loadings are non-zero if both i and k measure a; (i.e. in a 

unidimensional comparison).  

Using (15) and (21), the Fisher information matrix for pair {i, k} is a d  d matrix 
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   

        
   

T 2

1{ , } { , }

, 2 2
1 1

C
c ci k i k

i k
ci k c c

x x

x x



 

  


   


ΑΛ ΑΛ
I η , (22) 

where  
{ , }i k

ΑΛ is the vector (column) corresponding to the {i, k}
th

 row of matrix A. For 

example, consider a pair with factorially pure items i = 1 and k = 2 measuring traits 1 and 

2, with factor loadings 1 and 2 respectively. The information matrix for this pair will have 

only four non-zero entries: 

 

    
   

2

1 1 2
2

2
12 1 2 2

1,2 2 2
11 2 1

0

01

0 0 0

C
c cn

c c c

x x

x x



 

   
 

     
    
 
 

I   (23) 

When block size n  3, the latent factor space F in (20) includes d common factors η 

representing the attributes and bn unique factors  representing the utility errors. Denoting zc 

the category-dependent argument of the cumulative category probability in (18), the partial 

derivative with respect to any common factor a is (McDonald, 1999) 

      
 

 *

, 2

,

P , Φ = ia ka
a c a ci k c

i k

z z
 

     


η ε  , (24) 

where  cz  is the normal density function evaluated at zc; and ia and ka are the respective 

factor loadings of items i and k on factor a. Again, any or both of these factor loadings may 

be zero depending on whether items i and k measure a. The partial derivatives with respect 

to the unique factors of items not involved in the comparison are zero, and the only non-zero 

derivatives are with respect to i and k:  
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   
 

 *

, 2

,

1
P , i ci k c

i k

z   


η ε      and       
 

 *

, 2

,

1
P , k ci k c

i k

z


   


η ε  . (25) 

Using (18) and  (25) the Fisher information matrix for graded pair {i, k} in (20) 

simplifies to the (d +bn)  (d +bn) matrix 

 
   

 

    
   

2T T

1{ , } { , } { , } { , }3

, T T2
1{ , } { , } { , } { , } 1,

1
,

C
c ci k i k i k i kn

i k
ci k i k i k i k c ci k

z z

z z



 

    
      


ΑΛ ΑΛ ΑΛ Α

I η ε
Α ΑΛ Α Α

. (26) 

The matrix consists of four distinct blocks: (1) a d  d  top left block corresponding to the 

products of pair loadings on the common factors, (2) a bn  bn bottom right block 

corresponding to the products of pair loadings on the unique factors, and (3) and (4) 

symmetrical blocks of sizes d  bn and bn  d corresponding to the cross-products of pair 

loadings on the common and unique factors.  

As the counterpart example to (23), below is the Fisher information matrix for 

factorially pure items i = 1 and k = 2 measuring traits 1 and 2, with factor loadings 1 and 

2 respectively. As can be seen, the matrix has only four non-zero entries in each block: 

 
 

    
   

2

1 1 2 1 1

2

1 2 2 2 2

2

13

1,2 2
1 11,2 1 2

1 2

0 0

0 0

0 0 0 0 0 01

0 1 1 0

0 1 1 0

0 0 0 0

C
c cn

c c c

z z

z z



 

     
 
     
 
 

   
     
 
   

 
 
 
 

I .  (27) 

Test information. Since for all block sizes, the response variables y{i, k} are fully 

conditioned on all contributing influences including the utility errors in (18), the item 

information functions are additive. This is a major advantage of the graded block design over 
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the binary choice designs described in Brown and Maydeu-Olivares (2011)
4
. To evaluate the 

amount of information for the whole questionnaire, we sum the Fisher information matrices 

for all the graded pairs. This summation takes care of zero and non-zero loading patterns on 

all latent factors, therefore providing a convenient summary for the whole test.  

When Bayesian methods such as MAP are used for score estimation, the prior 

information must be added to the Fisher (maximum likelihood) test information to compute 

the posterior test information. For the block size n = 2, the factorial space is defined only by 

the common factors , so the posterior information matrix is derived by adding their inverted 

covariance matrix 
1

Φ  (Du Toit, 2003) 

      2 2 1

,
{ , }

n n

P i k
i k

   I η I η Φ . (28) 

For blocks of size n  3, the factor space includes also the unique factors , but since the 

common and unique factors are uncorrelated, the prior covariance matrix is a block-diagonal 

matrix with Φ  and 
2

Ψ  on the diagonal. The inverted covariance matrix is a block-diagonal 

matrix with 
-1

Φ  and  
-1

2
Ψ  on the diagonal, and the posterior information matrix is 

      
 

-1

3 3
-1,

{ , }

0
, ,

0

n n

P i k
i k

 
 
  
 
 

 2

Φ
I η ε I η ε

Ψ
. (29) 

Rank of Fisher Test Information Matrix. While the Fisher item information matrix 

always has rank 1 (Mulder & van der Linden, 2009), the maximum likelihood test 

                                                 

4
 In binary choice designs using rankings, the intransitivity errors are zero and the ICC cannot be 

conditioned on the utility errors as in (18). Instead, the expression (15) is used, despite local dependencies 

existing between pairs involving the same utilities.   
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information matrix for block size n = 2, which is the sum of the item information matrices 

described by (22)  generally has the full rank d, and therefore is invertible. This is because the 

matrix  is of full rank, d, unless the test items have the discrimination parameters with the 

same proportional relationship (Brown, 2016a). Adding the posterior information matrix 
1

Φ

preserves the full rank. However, in blocks of size n  3, the maximum likelihood test 

information matrix, which is the sum of the matrices (26) is not of full rank. This is the result 

of the reduced column-rank of blocks (6) in the contrast matrix  (Maydeu-Olivares, 1999), 

which determines the bottom-right block T

{ , } { , }i k i kΑ Α of the Fisher information matrix. For 

instance, matrix A3 in (6) has rank 2 rather than 3 (the number of columns, also the number of 

utilities). Because the contrast matrices are identical for every block, the sum of all item 

information matrices 3n
I has a reduced rank and is not invertible, and the SEs of the 

maximum likelihood factor scores cannot be computed using this method. However, the 

posterior test information matrices for any block size, 2n

P


I and 3n

P


I , are generally of full rank, 

therefore they can be inverted to compute the SEs of MAP scores.  
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Table 1 

Correlations between the latent Five Factors underlying Likert ratings and graded 

preferences in the empirical example  

 N E O A C 

Neuroticism (N)  -.239** -.253** -.091* -.157** 

Extraversion (E) -.156**  .290** .426** .119* 

Openness (O) -.167** .208**  .163** .083 

Agreeableness (A) -.097* .422** .138**  .129** 

Conscientiousness (C) -.065 .027 .010 .080  

 

Note: The mono-method hetero-trait latent correlations from the Likert model are above the 

diagonal, from the graded-preference model are below the diagonal. ** Correlations are 

significant at the .01 level, two-tailed. * Correlations significant at the .05 level, two-tailed. 



 

 

Table 2 

Standard errors of MAP scores, reliabilities and mono-method hetero-trait correlations of the Five Factor scores based on Likert items and 

Graded Preferences in the empirical example  

 Likert ratings Graded preferences  

 α  2 ˆSE    ˆvar   
Emp.  

reliability 
 2 ˆSE    ˆvar   

Emp.  

reliability 
 ˆ ˆcorr ,L GP   

Neuroticism (N) .901 .082 .915 .918 .134 .793 .855 .891 (1.005) 

Extraversion (E) .920 .072 .923 .928 .112 .823 .880 .893 (.988) 

Openness (O) .859 .119 .900 .883 .188 .753 .800 .837 (.996) 

Agreeableness (A) .906 .095 .870 .902 .159 .770 .829 .810 (.937) 

Conscientiousness (C) .893 .099 .909 .902 .161 .799 .832 .852 (.984) 

 

Note: L = Likert; GP = Graded Preferences. Observed correlations between the estimated factor scores in the two measurement models are 

shown; these correlations corrected for unreliability of both measures are in parentheses. 

  



 

 

Figure 1. A fragment of measurement models for data collected in the Five Factor 

questionnaire example (only data from first 9 items are shown) 

 

a. Model for Likert data 

 

b. Model for graded-preference data 

Note. N = Neuroticism; E = Extraversion; O = Openness; A = Agreeableness; C = 

Conscientiousness. 
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Figure 2. Standard errors of the Neuroticism MAP scores for data collected in the Five Factor 

questionnaire example  

 

a. Likert data 

 

b. Graded-preference data 
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