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Self-interaction-corrected relativistic theory of magnetic scattering of x rays:
Application to praseodymium
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A first-principles theory of resonant magnetic scattering of x rays is presented. The scattering amplitudes are
calculated using a standard time-dependent perturbation theory to second order in the electron-photon interac-
tion vertex. In order to calculate the cross section reliably an accurate description of the electronic states in the
material under investigation is required and this is provided by the density functional theory employing the
local spin density approximation combined with the self-interaction corrections. The magnetic x-ray resonant
scattering theory has been implemented in the framework of the relativistic spin-polarized linear muffin tin
orbital with atomic sphere approximation band structure calculation method. The theory is illustrated with an
application to ferromagnetic praseodymium. It is shown that the theory quantitatively reproduces the depen-
dence on the spin and orbital magnetic moments originally predicted qualitatively[Blume, J. Appl. Phys.57,
3615 (1985)] and yields results that can be compared directly with experiment.
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I. INTRODUCTION

Resonant magnetic x-ray scattering(MXRS) is a well-
developed technique for probing the magnetic and electronic
structures of materials. The foundations of the theory of
MXRS were laid down by Blume.1 Later on Blume and
Gibbs2 developed the theory further to show that the orbital
and spin contributions to the magnetic moment can be mea-
sured separately using MXRS with a judicious choice of ex-
perimental geometry and polarization of the x rays. Hannon
et al.3 presented a nonrelativistic theory of x-ray resonance
exchange scattering and wrote down explicit expressions for
the electric dipolesE1d and quadrupolesE2d contributions.
This work is based on an atomic model of magnetism and
has been applied successfully to a variety of materials in-
cluding UAs and Gd by Fasolinoet al.4 Rennert5 produced a
semirelativistic theory of MXRS written in terms of Green’s
functions, but no such calculations have been performed.
More recently, theory based on an atomic model of the elec-
tronic structure of materials has been written down by
Lovesey6 and co-workers and applied successfully to a vari-
ety of materials. Takahashiet al. have reported a theory
which includes the band structure in the calculation of
anomalous x-ray scattering.7 A first-principles theory of
MXRS based on a time-dependent second order perturbation
theory and density functional theory8,9 was produced by
Arola et al.10,11 and applied successfully to several transition
metal materials.12 This theory is restricted in its range of
application because of the limitations imposed by the local
density approximation to density functional theory(DFT)
which means that the theory can only be applied to simple
and transition metal materials. This is particularly unfortu-
nate because it is in the rare-earth and actinide materials that
the most exotic magnetism in the periodic table occurs.

In recent years advances in electronic structure calcula-
tions beyond the local density approximation have broadened

the range of materials for which numerically accurate elec-
tronic structure calculations can be performed. In particular
the local density approximation(LDA )+U method13 and the
self-interaction corrected local spin density approximation to
density functional theory14–17 have met with considerable
success in describing materials with localized electrons. The
latter method reduces the degeneracy of thef states at the
Fermi level and hence also circumvents all the convergence
problems associated with the local spin density(LSD) ap-
proximation to DFT in electronic structure calculations for
rare-earth materials. Notably, the LSD self-interaction cor-
rection (SIC) has provided a very good description of the
rare-earth metal and rare-earth chalcogenide crystal
structures.18 A relativistic version of the SIC formalism has
been derived19 that has been shown to yield an excellent
description of the electronic structure of rare-earth materials
in the few cases to which it has been applied. This method
was reviewed by Temmermanet al.16

The fact that electromagnetic radiation can be scattered
from the magnetic moments of spin-1/2 particles was first
shown by Low and Gell-Mann and Goldberger half a century
ago.20 Later on it was Platzman and Tzoar21 who first pro-
posed the use of x-ray scattering techniques to study the
magnetization density of solids. At that time progress in
studying magnetic structures using x rays was severely ham-
pered because the cross section for magnetic scattering is
smaller than the cross section for charge scattering1 by a
factor of s"v /mc2d2. It was Gibbset al.22 who first observed
a large resonant enhancement of the cross section when the
energy of the x ray is tuned through an absorption edge.
Since that time technological advances have produced high
resolution, high intensity synchrotron radiation sources that
have transformed magnetic x-ray resonant scattering into a
practical tool for investigating magnetic, and electronic
structures of materials. Nowadays the world’s leading syn-
chrotron facilities have beamlines dedicated to this
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technique23 and applications of resonant x-ray scattering are
burgeoning. Reviews of the experimental state-of-the-art
MXRS techniques have been written by Stirling24 and
Cooper.25

Other approaches to interpreting MXRS spectra exist, par-
ticularly the successful methods based on group theory and
angular momentum algebra that result in sum rules as de-
scribed by Borgatti26 and by Carra27 and Luo.28 The present
work should not be regarded as a rival theory to these, but
rather as an attempt to extend the range of density functional
methods to describe magnetic scattering of x rays in the
same way as is done for photoemission and other
spectroscopies.29 As a DFT-based theory our work is, of
course, based on very different approximations to this earlier
work, making direct comparison between the two theories
problematic.

We have recently implemented a first-principles theory of
MXRS that is based on a standard time-dependent perturba-
tion theory where the scattering amplitudes are calculated to
second order in the electron-photon interaction vertex. To
describe MXRS from a given material it is necessary to have
an accurate description of the electronic structure of the ma-
terial in question. This is provided by using the SIC within
the LSD approximation to the density functional theory
which is implemented using the relativistic spin-polarized
LMTO-ASA band structure calculation method.30 The theory
of MXRS is equivalent to that of Arolaet al.,10 but has been
rewritten in a form that is appropriate for implementation in
connection with the LMTO-ASA method where there is sub-
stantial experience of SIC methods. The major step forward
reported in this paper is the integration of the SIC into the
MXRS theory which enables us to describe rare earth and
actinide materials on an equal footing with transition and
simple materials.

In this paper, we give a detailed description of the MXRS
theory and illustrate it in a calculation for praseodymium.
The results are analyzed and discussed. Finally we show that
the present work is consistent with the earlier theory and
demonstrate how the MXRS cross section reflects the prop-
erties of these materials.

II. THEORY

A. The relativistic SIC-LSD formalism

The SIC-LSD approximation31,32 is anab initio electronic
structure scheme that is capable of describing localization
phenomena in solids.15–17 In this scheme the spurious self-
interaction of each occupied electron state is subtracted from
the conventional LSD approximation to the total energy
functional, which leads to a greatly improved description of
static Coulomb correlation effects over the LSD approxima-
tion. This has been demonstrated in studies of the Hubbard
model,33,34 in applications to 3d monoxides15,17 and
cuprates,15,35 f-electron systems,18,36,37 orbital ordering,38

metal-insulator transitions,39 and solid hydrogen.40

For many applications it is necessary to account for all
relativistic effects including spin-orbit coupling in an elec-
tronic structure calculation. Relativistic effects become pro-
gressively more important as we proceed to heavier ele-

ments. They are also extremely important when we are
considering properties dependent on orbital moments and
their coupling to electron spins.

The relativistic total energy functional in the local spin
density approximation is

ELSDfnsr dg = Ekinfnsr dg + Ufnsr dg +E Vextsr dnsr dd3r

+ Exc
LSDfnsr dg −E Bextsr d ·msr dd3r , s1ad

wherensr d=fn↑sr d ,n↓sr dgh;fnsr d ,msr dgj labels the spin up
and spin down charge density:

Ekinfnsr dg = o
L

kcLuT̂ucLl, s1bd

Exc
LSDfnsr dg =E nsr dexcfnsr dgd3r . s1cd

Here T̂ is an operator describing the kinetic energy and rest
mass of the electrons

T̂ =
c"

i
a · ¹ + mc2sb − I4d, s2d

wherea andb are the usual relativistic matrices.41 Ufnsr dg
represents all two particle interactions including the Breit
interaction.Vextsr d is the external potential andBextsr d is an
external magnetic field. The densitynsr d and the spin density
msr d are given by

nsr d = o
L

cL
† sr dcLsr d, s3d

msr d = − mBo
L

cL
† sr dbs4cLsr d, s4d

wheres4 is the 434 matrix spin operator andL represents
the quantum numbers. In Eqs.(4) and (5) below we have
implied a representation in which spin is a good quantum
number and the sums are over the occupied states.excfnsr dg
is the exchange correlation energy of a gas of constant den-
sity and Eq.(1c) is the local spin density approximation.

If we minimize the functional(1a) with respect to changes
in the density and spin density we obtain a Dirac-like equa-
tion

Sc"

i
a · ¹ + mc2sb − I4d + Veffsr d + mBbs4 ·Beffsr dDcLsr d

= eLcLsr d, s5ad

where

Veffsr d = Vextsr d +
e2

4pe0
E nsr 8d

ur − r 8u
d3r8 +

dExc
LSDfnsr dg
dnsr d

,

s5bd
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Beffsr d = Bextsr d −
dExc

LSDfnsr dg
dmsr d

, s5cd

where nsr d;fn↑sr d ,n↓sr dgh;fnsr d ,msr dgj. The local spin
density approximation discussed above provides a very suc-
cessful description of a variety of properties of condensed
matter, but suffers from a drawback because it contains self-
interactions of the single particle charges. In an exact theory
these spurious self-interactions would precisely cancel. In the
LSD the cancellation is only approximate and in materials
where there are well-localized electrons this can lead to sig-
nificant errors. The SIC-LSD approach to this problem is to
augment the LSD functional with an extra term that removes
this deficiency:19

ESIC-LSD= ELSD + ESIC, s6ad

where

ESICfhngsr djg = − o
g

hUfngsr dg + Exc
LSDfngsr dgj, s6bd

wherengsr d;fng
↑sr d ,ng

↓sr dgh;fngsr d ,mgsr dgj and

Ufngsr dg =
1

2

e2

4pe0
E E ngsr dngsr 8d

ur − r 8u
d3r8d3r , s6cd

Exc
LSDfngsr dg =E ngsr dexcfngsr dgd3r , s6dd

whereg runs over all orbitals that are SI corrected and

ngsr d ; cg
†sr dcgsr d, s6ed

mgsr d ; − mBcg
†sr dbs4cgsr d. s6fd

For the exchange-correlation term in the SIC energy we need
to consider a fully spin-polarized electron. The correspond-
ing single particlelike wave equation is obtained by taking
the functional derivative ofESIC-LSD with respect tocg

* sr d
and we obtain

Sc"

i
a · ¹ + mc2sb − I4d + Veffsr d + mBbs ·Beffsr d

+ Vg
SICsr dDcgsr d = o

g8

lg,g8cg8sr d, s7ad

where the SIC potential is given by

Vg
SICsr d = − S e2

4pe0
E ngsr 8d

ur − r 8u
dr 8 +

dExc
LSDfngsr dg
dngsr d

− mBbs4
dExc

LSDfngsr dg
dmgsr d

D . s7bd

The task of finding the single particlelike wave functions is
now considerably more challenging than for the bare LSD
because every state experiences a different potential. To
maintain the orthogonality of thecgsr d it is necessary to
calculate the Lagrange multiplier matrixlgg8.

As written in Eqs.(6), ESIC-LSD appears to be a functional
of the set of occupied orbitals rather than of the total spin

density only like ELSD. By a reformulation it may be
shown31,32 that ESIC-LSD can in fact be regarded as a func-
tional of the total spin density only. The associated
exchange-correlation energy functionalExc

SICfnsr dg is, how-
ever, only implicitly defined,32 for which reason the associ-
ated Kohn-Sham equations are rather impractical to exploit.
For periodic solids the SIC-LSD approximation is a genuine
extension of the LSD approximation in the sense that the
self-interaction correction is only finite for localized states,
which means that if all valence states considered are Bloch-
like single-particle statesESIC-LSD coincides with ELSD.
Therefore, the LSD minimum is also a local minimum of
ESIC-LSD. In some cases another set of single-particle states
may be found, not necessarily in Bloch form but, of course,
equivalent to Bloch states, to provide a local minimum for
ESIC-LSD. For this to happen some states must exist which can
benefit from the self-interaction term without losing too
much band formation energy. This will usually be the case
for rather well localized states such as the 3d states in tran-
sition metal oxides or the 4f states in rare-earth compounds.
Thus, ESIC-LSD is a spin density functional, which may be
used to describe localized as well as delocalized electron
states.

We have solved the SIC-LSD equations self-consistently
for a periodic solid using the unified Hamiltonian approach
described by Temmermanet al.42 The equations have been
solved on a periodic lattice using the relativistic LMTO
method in the tight-binding representation.

B. The relativistic spin-polarized LMTO method

In Sec. II C, uL8sr d will be a general notation for the
unoccupied intermediate states in the second order time-
dependent perturbation theory. In the case of a material with
translational periodicityuL8sr d will be a Bloch state

uL8sr d = c jksr d, s8d

for which

c jksr + Rd = eik·Rc jksr d, s9d

wherek is the wave vector defined to be in the first Brillouin
zone,j is the band index, andR is any Bravais lattice vector.
In the LMTO method the Bloch wave functions may be ex-
panded in several ways.30 For the calculation of observables
it is most convenient to make an expansion in terms of the
single-site solutions of the radial Dirac equation and their
energy derivatives. For the relativistic spin-polarized case
this has been achieved by Ebert43,44and it is this method that
we employ. The Bloch state in this representation is written
as

c jksr d = o
t=1

Ntype

o
i=1

Nt

o
L

fAtiL
jk fntLsr − ti

stdd + BtiL
jk ḟntLsr − ti

stddg.

s10ad

Here
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fntLsr i
stdd = o

k8
S gk8k

stdmjsen,r i
stddxk8

mjsr̂ i
stdd

i f k8k
stdmjsen,r i

stddx−k8
mj sr̂ i

stdd
D , s10bd

where theg
k8k

stdmjsE,r i
stdd and f

k8k

stdmjsE,r i
stdd are solutions of the

radial Dirac equation for a spin-polarized system, andr i
std

=r −ti
std. Details of the solution are given in Strangeet al.45

and ḟntLsr i
stdd is its energy derivative. These satisfy

kfntLufntLl = 1, kfntLuḟntLl = 0, s11d

where the subscriptn corresponds to the energyen about
which the muffin-tin orbitals of Eq.(10b) are expanded, and
the normalization integrals have been done within the atomic
sphereSt. The single particle functionsfntLsr d and ḟntLsr d
are evaluated at energyen. In this relativistic formulation
L;skmjd labels the boundary condition for the independent
single-site solutionfntLsr −ti

stdd of the Dirac equation about
the basis atom atti

std. Ntype is the number of different types of
atom in the unit cell.Nt is the number of equivalent atoms of
type t. The coefficientsAtiL

jk andBtiL
jk are written in terms of

the LMTO structure constants and potential parameters, and
are completely determined by a self-consistent LMTO calcu-
lation of the electronic structure.30 Key observables are then
given in terms of these quantities. In particular the spin mo-
ment is

mS= o
j
E

e jk,eF

ms
jkd3k, s12ad

where

ms
jk = o

t,i
o
L

o
L8

sAtiL
jk*AtiL8

jk kfntLubs4zufntL8l

+ BtiL
jk*BtiL8

jk kḟntLubs4zuḟntL8l

+ AtiL
jk*BtiL8

jk kfntLubs4zuḟntL8l

+ BtiL
jk*AtiL8

jk kḟntLubs4zufntL8ld s12bd

with eF being the Fermi energy ande jk is the Bloch state
eigenenergy. The orbital moment is

mL = o
j
E

e jk,eF

ml
jkd3k, s13ad

where

ml
jk = o

t,i
o
L

o
L8

sAtiL
jk*AtiL8

jk kfntLublzufntL8l

+ BtiL
jk*BtiL8

jk kḟntLublzuḟntL8l + AtiL
jk*BtiL8

jk kfntLublzuḟntL8l

+ BtiL
jk*AtiL8

jk kḟntLublzufntL8ld. s13bd

In all our calculations theB field is along thez axis which
therefore acts as an axis of quantization.

C. The x-ray scattering cross section

In this section we will outline the formal first-principles
theory of magnetic x-ray scattering for materials with trans-
lational periodicity. The theory is based on the fully relativ-
istic spin-polarized SIC-LMTO method in conjunction with
second order time-dependent perturbation theory. To simplify
the presentation a straightforward canonical perturbation
theory41 is presented rather than a more sophisticated dia-
grammatic method.29

1. Basic theory of x-ray scattering

The theory of x-ray scattering is based on the second or-
der golden rule for the transition probability per unit time:

wif =
2p

"
Ukf uĤint8 uil + o

I

kf uĤint8 uIlkI uĤint8 uil
Ei − EI

U2

dsEf − Eid,

s14d

where uil, uIl, and ufl are the initial, intermediate, and final
states of the electron-photon system.Ei, EI, and Ef are the

corresponding energies.Ĥint8 is the time-independent part of
the photon-electron interaction operator. The formalism to
reduce this general expression to single-electron-like form
has been published previously.10 Therefore we will not repeat
the details here, but only the equations that are key to the
present implementation.

In relativistic quantum theory it is the second term in Eq.
(15) that is entirely responsible for scattering as it is second
order in the vector potential. It is convenient to divide this
term into four components. To see this note that there are just
two types of intermediate stateuIl, those containing no pho-
tons and those containing two photons. We can also divide
up the scattering amplitude according to whether or not the
intermediate states contain excitations from the “negative-
energy sea of electrons,” i.e., the creation of electron-
positron pairs. It can be shown that the x-ray scattering am-
plitude in the case of elastic scattering can be written as10,46

fql;q8l8svd = fql;q8l8
+pos svd + fql;q8l8

−pos svd + fql;q8l8
+neg svd + fql;q8l8

−neg svd

= o
I,eL.0

kf uĤint8 uIlkI uĤint8 uil
Ei − EI

− o
I,eL,0

kf uĤint8 uIlkI uĤint8 uil
Ei − EI
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= o
LL8

E d3ruL
† sr dXq8l8

† sr duL8sr dE d3r8uL8
† sr 8dXqlsr 8duLsr 8d

eL − eL8 + "v
f1g

+ o
LL8

E d3ruL
† sr dXqlsr duL8sr dE d3r8uL8

† sr 8dXq8l8
† sr 8duLsr 8d

eL − eL8 − "v
f2g

− o
LL8

E d3rvL
† sr dXq8l8

† sr duL8sr dE d3r8uL8
† sr 8dXqlsr 8dvLsr 8d

eL − eL8 + "v
f3g

− o
LL8

E d3rvL
† sr dXqlsr duL8sr dE d3r8uL8

† sr 8dXq8l8
† sr 8dvLsr 8d

eL − eL8 − "v
, f4g s15d

whereuLsr d andvLsr d are positive-energy electron and pos-
itron eigenstates of the Dirac Hamiltonian for the crystal and
form a complete orthonormal set of four-component basis
functions in the Dirac space. The quantum state labelL can
then be related by symmetry arguments toL. In Eq. (15)
term [1] represents scattering with no photons and positive
energy electrons only in the intermediate state, term[2] is
when there are two photons and positive energy electrons
only in the intermediate state, term[3] is for no photons and
when negative-energy electrons exist in the intermediate
state, and term[4] is for when two photons and negative-
energy electrons exist in the intermediate state. We may re-
call that within the golden rule based Thomson scattering
formalism the negative-energy related state terms have the
wrong sign. Therefore amplitudes[3] and [4] in Eq. (15)
have been nonrigorously corrected by multiplying them by
21. The positive energy one-electron states are subject to the
constraint thateLøeF andeL8.eF. The relativistic photon-
electron interaction vertex is

Xqlsr d = − eS "c2

2Ve0v
D1/2

a · êsldsq̂deiq·r , s16d

wheree=−ueu, andq, lsq8 ,l8d represent the wave vector and
polarization of the incident(outgoing) photon, andêsldsq̂d is
the polarization vector for the x-ray propagating in the direc-
tion of q. The a;sax,ay,azd are the usual relativistic ma-
trices in the standard representation. In Eq.(15) the last two
terms are neglected. The justification for this is twofold.
First, in the energy range of interest"v!2mc2 these two
terms have no resonance, and so will only make a contribu-
tion to the cross section that is slowly varying. This is to be
compared with the resonant behavior of the first term. Sec-
ondly, in Thomson scattering, where the negative energy
states play a key role, all the electron states are extended. In
a crystalline environment the negative energy states are

largely extended while the states close to the Fermi energy
are more localized, so one would expect the matrix elements
to be smaller. For further details see Sec. II C of Ref. 10.
Henceforth the first term in Eq.(15) will be referred to as the
resonant term and the second as the nonresonant term.

In elastic scattering of x raysuLsr d is an atomiclike core
state localized at a lattice site. Although it is localized it is
still an electron state of the crystal Hamiltonian. It is given
by

uLn

sndsr nd = o
kn8
S g

kn8kn

sndmjsrndx
kn8
mjsr̂ nd

i f
kn8kn

sndmjsrndx−kn8
mj sr̂ nd D , s17d

whereg
kn8kn

sndmjsrnd and f
kn8kn

sndmjsrnd are solutions of the radial spin-

polarized Dirac equation45 at the siten and xk
mjsr̂ d are the

usual spin-angular functions with angular momentum related
quantum numbersL;skmjd.41,47,48As in Eq. (10b) the sum
over kn8 runs overkn8=kn andkn8=−kn−1 only.

2. Evaluation of the cross section

The physical observable measured in MXRS experiments
is the elastic differential cross section for scattering. This is
given by (see Sec. II E of Ref. 10)

ds

dV
=

V2v2

s2pd2"2c4ufql;q8l8svdu2, s18d

where the symbols have their usual meanings, and we need
to calculate the first two terms of Eq.(15), i.e., f+sposd and
f−sposd.

When implementing Eq.(15) for a perfect, translationally
periodic multiatom per unit cell crystal we use the following
coordinate transformations:

r ; RI i
+ r I i

= Ri
s0d + RI + r I i

, s19ad

SELF-INTERACTION-CORRECTED RELATIVISTIC… PHYSICAL REVIEW B 70, 235127(2004)
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r 8 ; RJj
+ r Jj

= R j
s0d + RJ + r Jj

, s19bd

whereRi
s0d and R j

s0d denote theith and j th basis atoms, re-
spectively, in the 0th unit cell, andRI and RJ are Bravais
lattice vectors.

Furthermore, we use the substitutions

o
L

→ o
N

o
n

o
LsNnd

, s19cd

o
L8

→ o
jk

s19dd

and

È d3r → o
I

o
i
E

SIi

d3rIi
, s19ed

È d3r8 → o
J

o
j
E

SJj

d3rJj
, s19fd

whereN, I, andJ stand for the label of unit cells,n, i, j stand
for the label of basis atoms, andLsNnd is the initial core state
label for an atom at siteRNn

.
Using Eqs.(19) and(8) in connection with term[1] of Eq.

(15) the resonant part of the positive-energy scattering am-
plitude for a perfect crystal can be written as

fql;q8l8
+sposd svd = o

N
o
n

o
LsNnd

o
jk

1

eLsNnd − e jk + "v

3o
I

o
i
E

SIi

d3rIi
uLsNndsRI i

+ r I i
dXq8l8

† sRI i
+ r I i

d

3c jksRI i
+ r I i

do
J

o
j
E

SJj

d3rJj
8 c jk†

sRJj
+ r Jj

8 d

3XqlsRJj
+ r Jj

8 duLsNndsRJj
+ r Jj

8 d, s20d

where the sums are restricted such thateLsNnd,eF and e jk

.eF.
We approximate Eq.(20) in a similar way as we did ear-

lier in our R-SP-GF-MS method based MXRS theory(see
Sec. II B of Arola et al.10). Because the core statesuLsNnd
participating to the x-ray scattering(XS) are well-localized
around siteRNn

, the dominant contribution to XS in Eq.(20)
comes from theI i =Nn (i.e., I =N, i =n) and Jj =Nn (i.e., J
=N, j =n) terms. From the physical viewpoint, this refers to
the situation where in the anomalous scattering process of x
rays a core electron will be annihilated and created at the
same atomic site(site-diagonal scattering).

Furthermore, we note that in the perfect crystal case the
following properties can be used:(1) RNn

=Rn
s0d+RN, (2)

electronic coordinater Nn
can be replaced byr n, (3)

c jksRn
s0d+RN+r nd=eik·RNc jksRn

s0d+r nd, i.e., Bloch’s theorem
for intermediate states, and(4) the core state labelLsNnd
=Ln, i.e., is unit cell independent. If we also use the explicit

form of the photon-electron interaction vertex of Eq.(16)
then we end up to the following expression for thef+sposd

scattering amplitude:

fql;q8l8
+sposd svd = o

N
Ho

jk
o
n

o
Ln

e−isq8−qd·Rn
s0d

3
mLn

snd+jksq8l8dmLn

snd+jk*sqld

eLn

snd − e jk + "v
Je−isq8−qd·RN,

s21ad

where the resonant matrix elements are defined as

mLn

snd+jksqld ; E
Sn

d3rnuLn

snd†sr ndXql
† sr ndc jksRn

s0d + r nd,

s21bd

whereSn refers to thenth atomic sphere within the unit cell.
In Eq. (21) we notice that

o
N

e−isq8−qd·RN = Ncellso
k

dq8−q,K , s22ad

and

o
jk

→ o
j

V

s2pd3E
1BZ

d3k, s22bd

whereNcells is the number of unit cells in the crystal,K is a
reciprocal lattice vector, anddq8−q,K is the Kroneckerd func-
tion.

As the last step, we decompose the general basis atom
labeln in Eq. (21) into typet st=1,… ,Ntyped and basis atom
label i si =1,… ,Ntd, i.e., n;stid. Consequently, this intro-
duces the following notational changes in Eq.(21):

o
n

→ o
t=1

Ntype

o
i=1

Nt

, Ln → Lt, Rn
s0d → ti

std,

esnd → estd, Sn → St, mskd → mstid,

uskd → ustd, r k → r i
std. s23d

Implementing these notations along with Eq.(22) in Eq.
(21), leads to the final expression for the resonant part of the
scattering amplitude in Bragg diffraction which is

fql;q8l8
+sposd svd = f0;ql;q8l8

+sposd svdNcellso
k

dQ·K , s24ad

where the 0th unit cell contribution to the scattering ampli-
tude is

f0;ql;q8l8
+sposd svd = o

j

V

s2pd3E
k[1BZ

d3k o
t=1

Ntype

o
i=1

Nt

o
Lt

e−iQ·ti
std

3
mLt

stid+jksq8l8dmLt

stid+jk*sqld

eLt

std − e jk + "v + iGLt

std/2
use jk − eFd, s24bd

where Q;q8−q, and the matrix elementsmLt

stid+jksqld are
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given by Eq.(21b) with the new notations of Eq.(23). The
added phenomenological parameterGLt

std represents the natu-
ral width of the intermediate states created by the core hole
stateuLtl at thet type basis atom.

Similarly, starting from term[2] of Eq. (15), it can be
shown that the expression for the nonresonant part of the
scattering amplitude in Bragg diffraction can be written as

fql;q8l8
−sposd svd = f0;ql;q8l8

−sposd svdNcellso
k

dQ·K , s25ad

where the 0th unit cell contribution to the scattering ampli-
tude is

f0;ql;q8l8
−sposd svd = o

j

V

s2pd3E
k[1BZ

d3k o
t=1

Ntype

o
i=1

Nt

o
Lt

e−iQ·ti
std

3
mLt

stid−jksq8dmLt

stid−jk*sq8l8d

eLt

std − e jk − "v
use jk − eFd,

s25bd

where the nonresonant matrix element is defined as

mLt

stid−jksqld ; E
St

d3r i
stduLt

std†sr i
stddXqlsr i

stddc jksti
std + r i

stdd.

s25cd

The total amplitude in Bragg diffraction can then be calcu-
lated from

fql;q8l8
sposd svd = sf0;ql;q8l8

+sposd svd + f0;ql;q8l8
−sposd dNcellso

k
dQ·k ,

s26d

where f0
+sposd and f0

−sposd amplitudes are given in Eqs.(24b)
and (25b), respectively.

D. Matrix elements

In this section we present the derivation of computable
expressions for the matrix elementsmLt

stid+jksqld and

mLt

stid−jksqld in the framework of the R-SP-SIC-LMTO elec-
tronic structure method. Using the expansion of Eq.(10a) for
the SIC-LDA Bloch statec jksr d, and noticing that the inde-
pendent single-site solutionfntLsr d of the Dirac equation
vanishes outside the atomic sphere at sitestid, i.e., fntLsr d
=0 for r .St (see Ref. 49, pp. 120–1), then the resonant
matrix elementmLt

stid+jksqld can be written as

mLt

stid+jksqld = o
L

fAtiL
jk suLt

stduXql
† ufntLd + BtiL

jk suLt

stduXql
† uḟntLdg,

s27ad

wheresf uXql
† ugd is defined as

sf uXql
† ugd ; E

St
d3rf †sr dXql

† sr dgsr d, s27bd

where f ;uLt

std andg;fntL or ḟntL.

Similarly, it can be shown that the nonresonant matrix
elements can be written as

mLt

stid−jksqld = o
L

fAtiL
jk suLt

stduXqlufntLd + BtiL
jk suLt

stduXqluḟntLdg,

s28d

where sf uXqlugd quantities can be calculated by doing the
replacementXql

† →Xql in Eq. (27b).
Finally, we mention few practical points about the imple-

mentation of the matrix elements of Eqs.(27) and (28). We
will derive below numerically tractable approximations for
these matrix elements due to the electric dipolesE1d or mag-
netic dipole and electric quadrupolesM1+E2d contributions
to the photon-electron interaction vertexXqlsr d.

1. Matrix elements in electric dipole approximation

In the electric dipole approximationsE1d [eiq·r <1 in Eq.
(16)], the resonant matrix elementmLt

stid+jksqld of Eq. (27)
can be written as

maLt

stid+jksqld = o
L

fAtiL
jk suLt

stduXaql
† ufntLd

+ BtiL
jk suLt

stduXaql
† uḟntLdg, s29ad

where

Xaqlsr d ; − ecS "

2Ve0vq

D1/2

a · êsldsq̂d. s29bd

Using the core state expansion(17) and the expansions
(10b) for fntLsr d and the analogous expansionḟntLsr d, re-
spectively, it can be shown thatsuLt

stduXaql
† ufntLd in Eq. (29a)

can be written as

suLt

stduXaql
† ufntLd

= − iecS "

2Ve0vq

D1/2

3 o
kt8k8

HFE
0

RWS
std

dr r2g
kt8kt

stdmjt
*

srdfk8k
stdmjsen,rdG

3Akt8mjt
;−k8mj

s−ld sq̂d − FE
0

RWS
std

dr r2f
kt8kt

stdmjt
*

srdgk8k
stdmjsen,rdG

3A−kt8mjt
;k8mj

s−ld sq̂dJ , s30ad

in terms of the radial and angular integrals;RWS is the
Wiegner-Seitz radius and the angular integrals are defined
by10
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Akmj;k8mj8
sld sq̂d ; E xk

mj
†

sr̂ds · êsldsq̂dx
k8
mj8sr̂ddV. s30bd

A numerically tractable expression forsuLt

stduXaql
† uḟntLd in

Eq. (29a) can then be written immediately by doing the re-

placementsf
k8k

stdmj → ḟ
k8k

stdmj andg
k8k

stdmj → ġ
k8k

stdmj on the right side of
Eq. (30a).

Similarly, making a replacementXql→Xaql in Eq. (28),
and using the propertyXaqlsr d=Xaq−l

† sr d for circularly po-
larized light, we can immediately show that the nonresonant
matrix elements can be computed from the resonant ones in
the E1 approximation(for further details, see Sec. II D of
Ref. 10) as

maLt

stid−jksqld = maLt

stid+jksq − ld. s31d

If the photon propagates along the direction of magnetization
(the z axis) then the unit polarization vectors for left circu-
larly polarized (LCP) and right circularly polarized(RCP)
light are ês+dsẑd=s1,i ,0d /Î2 and ês−dsẑd=s1,−i ,0d /Î2, re-
spectively. To obtain the polarization vectors for propagation
directions away from thez axis, rotation matrices are applied
to these vectors. Using the well-known orthonormality prop-
erties of the spherical harmonics the angular integrals of Eq.
(30b) can be written

Ak,mj;k8mj8
sld sq̂d = f11suq,fq,ldCSl

1

2
j ;mj −

1

2
,
1

2
D

3CSl8
1

2
j8;mj8 −

1

2
,
1

2
Ddll8dmj,mj8

+ f12suq,fq,ld

3CSl
1

2
j ;mj −

1

2
,
1

2
DCSl8

1

2
j8;mj8 +

1

2
,−

1

2
D

3dll8dmj,mj8+1 + f21suq,fq,ld

3CSl
1

2
j ;mj +

1

2
,−

1

2
D

3CSl8
1

2
j8;mj8 −

1

2
,
1

2
Ddll8dmj,mj8−1

+ f22suq,fq,ldCSl
1

2
j ;mj +

1

2
,−

1

2
D

3CSl8
1

2
j8;mj8 +

1

2
,−

1

2
Ddll8dmj,mj8

. s32d

The angular factorsf ijsu ,f ,ld are determined by the direc-
tion of propagation and the photon polarization. They are
discussed in detail by Arolaet al.10 In the case where the
direction ofq is described by a rotation around they axis of

uq followed by a rotation about thez axis offq, in the active
interpretation they are given by

S f11suq,fq, + d f12suq,fq, + d
f21suq,fq, + d f22suq,fq, + d

D
=

1
Î2

S − sinuq scosuq + 1dexps− ifqd
scosuq − 1dexpsifqd sinuq

D
s33d

S f11suq,fq,− d f12suq,fq,− d
f21suq,fq,− d f22suq,fq,− d

D
=

1
Î2

S − sinuq scosuq − 1dexps− ifqd
scosuq + 1dexpsifqd sinuq

D
s34d

for positive and negative helicity x rays, respectively. The
angular matrix elements of Eq.(30b) together with the sym-
metry of theAtiL

jk andBtiL
jk coefficients determines the selec-

tion rules in the electric dipole approximation.
It is important to note that the selection rules, derived

originally for x-ray scattering in the framework of the
Green’s function multiple scattering electronic structure
theory,10 can be applied as such only to each term of Eq.
(29a) separately with angular momentumlike quantum num-
bers of the core statesLtd and single-site valence orbital
sLd.50 TheE1 selection rules then becomel − l t= ±1 for RCP
and LCP radiation in any propagation direction, whilemj
−mjt

=0, ±1, depending on the polarization state as well as
on the propagation direction of the photon. It is also notice-
able that the selection rules in the case of matrix elements
maLt

stid+jksqld are slightly different from the case of matrix

elementsmaLt

stid−jksqld with respect to the azimuthalmj quan-
tum number, because Eq.(30a) contains angular matrix ele-
ments of the formAs−ld, while the corresponding expression
for maLt

stid−jksqld containsAsld with an opposite polarization
state index.10

Derivation of the selection rules for the matrix elements
maLt

stid+jksqld or maLt

stid−jksqld would be possible only fork
points of high symmetry whose irreducible double point
group representations and the angular momentumL skmjd
decomposition for their symmetrized wave functions are
known. However, we apply numerical rather than group the-
oretical procedure to determine the selection rule properties
of the above mentioned matrix elements.

2. Matrix elements due to magnetic dipole and electric
quadrupole correction

We derive below an expression for the combined mag-
netic dipole and electric quadrupolesM1+E2d correction to
the electric dipole approximationsE1d of the matrix elements
of Eqs. (27a) and (28). If we now approximateeiq·r <1
+ iq ·r in Eq. (16) for Xqlsr d, then the termiq ·r is respon-
sible for thesM1+E2d corrections to the electric dipole ap-
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proximated matrix elementsmaLt

stid+jksqld and maLt

stid−jksqld,
which we denote asmbLt

stid+jksqld and mbLt

stid−jksqld, respec-
tively.

It is then a straightforward matter to show that the matrix
elementmbLt

stid+jksqld, related to the resonant part of the scat-
tering amplitude, can be written as

mbLt

stid+jksqld = o
L

fAtiL
jk suLt

stduXbql
† ufntLd

+ BtiL
jk suLt

stduXbql
† uḟntLdg, s35ad

where

Xbqlsr d ; − ecS "

2Ve0vq
D1/2

a · êsldsq̂diq · r . s35bd

Using again the angular momentum expansions of the
core stateuLt

std, fntL, and ḟntL functions, as we did in the

derivation of themaLt

stid+jksqld expression, we get for the first
term of Eq.(35a) as

suLt

stduXbql
† ufntLd

= − ecS "

2Ve0vq
D1/2

q

3 o
kt8k8

HFE
0

RWS
std

dr r3g
kt8kt

stdmjt
*

srdfk8k
stdmjsen,rdG

3Bkt8mjt
;k8mj

s−ld sq̂d − FE
0

RWS
std

dr r3f
kt8kt

stdmjt
*

srdgk8k
stdmjsev,rdG

3B−kt8mjt
;k8mj

s−ld sq̂dJ , s36ad

where the angular integrals are defined by10

Bkmj;k8mj8
sld sq̂d ; E xk

mj†sr̂ ds · ê sldsq̂dq̂ · r̂x
k8
mj8sr̂ ddV,

s36bd

whereuq̂u= ur̂ u=1. A similar expression can be worked out for
the second term of Eq.(35a) by doing the replacements

f
k8k

stdmj → ḟ
k8k

stdmj andg
k8k

stdmj → ġ
k8k

stdmj on the right side of Eq.(36a).
By Eq. (28), the nonresonant matrix elements

mbLt

stid−jksqld, due to thesM1+E2d correction, can then be
worked out by making the replacementXbql

† →Xbql in Eq.
(35a). By noticing thatXbqlsr d=−Xbq−l

† sr d, we can express
the nonresonantsM1+E2d matrix elements in terms of the
resonant ones as

mbLt

stid−jksqld = − mbLt

stid+jksq − ld. s37d

The angular matrix elementsB
kmj;k8mj8
sld sq̂d of Eq. (36b) can

be written as a sum of twelve terms[see Eq.(26) of Ref. 10].
Consequently, the selection rules of thesM1+E2d contribu-
tion to the x-ray scattering are essentially more complicated
than in theE1 case.

As guided by theE1 case above, we can derive thesM1
+E2d selection rules for each term of Eq.(35a) with angular
momentumlike quantum numbers of the core statesLtd and
single-site valence orbitalsLd. The resulting selection rules
are thenl − l t=0,61,62 with the restriction thats→p and
p→s be forbidden transitions, and for the azimuthal quan-
tum numbermj −mjt

=0,61,62, depending on the direction
and polarization of the photon.10

III. RESULTS

In this section we discuss a series of calculations to illus-
trate the relativistic MXRS theory we have developed within
the SIC-LSD method for ordered magnetic crystals, and to
explicitly demonstrate what information is contained in the
x-ray scattering cross section. For this we have chosen to
examine fcc praseodymium for a detailed analysis of the
theory. The reasons for this choice are as follows.(i)
Praseodymium contains two localizedf electrons. Therefore,
it is the simplestf-electron material for which we can to a
large extent alter both the spin and orbital contributions to
the magnetic moment by selectively choosing beforehand for
which electrons we apply the SIC correction.(ii ) Being fer-
romagnetic and fcc it has only one atom per primitive cell
and is therefore computationally efficient to work with.
While the fcc structure is not the observed ground state of Pr,
it has been fabricated with this structure at high temperatures
and pressures.(iii ) Using nonrelativistic SIC-LSD we have
obtained good agreement with experiment for the valence
and equilibrium lattice constant of praseodymium.(iv) Pre-
liminary calculations indicate that for the rare-earthMIV and
MV edges the MXRS spectra are, to first order, independent
of crystal structure, so the results we obtain may be provi-
sionally compared with experiment.

A. Ground-state properties

We have performed a self-consistent fully relativistic SIC-
LSD calculation of the electronic structure of praseodymium
at a series of lattice constants on the fcc structure and found
a minimum in the total energy as shown in Fig. 1, where the
results are presented in terms of the Wigner-Seitz radius.
There are a variety of different methods for obtaining the
experimental lattice constant. First we can use the Wigner-
Seitz radius that corresponds to the same volume per atom
on the fcc lattice as is found in the naturally occurring dhcp
crystal structure.30 This givesRWS=3.818 a.u. Secondly we
can take the room temperature value which is obtained ex-
perimentally from flakes of Pr by quenching in an arc fur-
nace. This yieldsRWS=3.827 a.u. and we can take the value
reported by Kutznetsov,52 RWS=3.793 a.u. which was mea-
sured on samples at 575 K. Clearly our calculated value of
RWS=3.82 a.u. is in excellent agreement with these values.
Following earlier work by Myron and Liu53 Söderlind per-
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formed a comprehensive first-principles study of the elec-
tronic structure of Pr using the full potential LMTO method
which shows that the fcc phase is stable at pressures between
60 and 165 kbar.54 Calculations employing the SIC within a
nonrelativistic framework have been performed by Temmer-
manet al.36 and by Svaneet al.55

Within the SIC-LSD method we can choose which elec-
tron states to correct for self-interaction. As the effect of the
SIC is to localize the states this effectively determines which
two of the 14 possiblef states are occupied in trivalent
praseodymium. All non-SI-corrected electrons are described
using the standard local spin-density approximation via the
unified Hamiltonian describing both localized and itinerant
electrons. By trying all possible configurations and determin-

ing which arrangement off electrons has the lowest total
energy we can determine the ground state of praseodymium.
It should be pointed out that this interpretation is rather dis-
tinct from the standard model of the rare-earth magnetism
where the Hund’s rule ground state can be thought of as a
linear combination of possible 4f2 states. In our model the
exchange field is automatically included and this yields a
Zeeman-like splitting of the 4f2 states and gives us a unique
ground state. In Table I we show a selection of possible
states occupied by the two electrons with their self-
consistently evaluated spin and orbital magnetic moments. In
Fig. 2 we display the calculated total energy of these states
against orbital moment. Note that we have chosen the spin
moments parallel for all the states shown. For the antiparallel
arrangement of electron spins the energy is significantly
higher. It is clear that there is an approximately linear rela-
tionship between the total energy and orbital moment. For all
the points on this figure the orbital as well as spin moments
are computed self-consistently including the relaxation of the
core states. The spin moments for all configurations off
electrons are found to be approximately the same, always
being within 0.06mB of 2.48mB (see Table I) in fair agree-
ment with the result of Söderlind.54 There is also a small
increase in the magnitude of the(positive) spin moment as
the orbital moment increases from its most negative to its
most positive values. This is due to the increasing effective
field felt by the valence electrons. There is a slight variation
in the spin moment values because the small hybridization of
the non-SIC correctedf electrons with the 5d-6s conduction
band is dependent on the orbital character of the occupied
states. Figure 2 is as consistent with Hund’s rules as it is
possible to be with single particlelike wave functions. The
lowest energy state hasf spins parallel to each other in
agreement with Hund’s first rule. The total spin moment is
2.42mB of which the two localizedf electrons contribute
1.98mB, and the remainder comes from spin polarization in

TABLE I. This table displays thef states selected for the self-interaction correction and the self-
consistently calculated spin and orbital magnetic moments of those states. The first column simply labels
different configurations of localized states, the second column gives theml andms quantum numbers of the
states from which self-interactions have been removed. Columns 3 and 4 are the calculated spin and orbital
contribution to the total magnetic moment from the self-interaction correctedf electrons shown in column 2.
Columns 5 and 6 are the calculated total spin and orbital contribution to the magnetic moment from all
electrons in fcc Pr. Note that the spin moment is fairly constant for all the selected configurations.

No. sml ,msd1sml ,msd2 MssSICd MlsSICd MLstd MSstd

1 (23,1/2), (22,1/2) 24.96 11.98 24.79 2.42

2 (23,1/2), (21,1/2) 23.95 12.00 23.91 2.43

3 (23,1/2), (0,1/2) 22.99 11.99 22.97 2.43

4 (23,1/2), (1,1/2) 21.96 11.96 21.97 2.48

5 (23,1/2), (2,1/2) 20.98 11.99 21.03 2.48

6 (23,1/2), (3,1/2) 20.005 12.00 20.05 2.52

7 (3,1/2), (22,1/2) 1.00 11.99 0.89 2.48

8 (3,1/2), (21,1/2) 2.02 11.97 1.84 2.50

9 (3,1/2), (0,1/2) 3.00 11.98 2.75 2.49

10 (3,1/2), (1,1/2) 4.00 11.97 3.80 2.52

11 (3,1/2), (2,1/2) 4.99 11.99 4.69 2.54

FIG. 1. The calculated SIC-LSD total energy of fcc praseody-
mium as a function of Wigner-Seitz radius. The electronic configu-
ration corresponding to the Hund’s rule ground state was used for
these calculations. The theoretical prediction of the Wigner-Seitz
radius is 3.82 a.u. Experimentally(see text) the value is 3.818 au
(Ref. 30), or 3.827 a.u.(Ref. 51) or 3.793 a.u.(Ref. 52).
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the valence bands. Thez component of the orbital magnetic
moment is −4.79mB which is composed of −4.97mB from the
localized f electrons and 0.18mB from the valence electrons.
Note that the valence contribution to the orbital moment is
parallel to the spin moment and antiparallel to the localized
orbital moment. These numbers are fully consistent with
Hund’s second rule. Furthermore thef shell is less than half
full and the spin and orbital moments are found to be anti-
parallel in the lowest energy state, consistent with Hund’s
third rule. The fact that we can reproduce the expected lattice
constant andf-electron configuration suggests very strongly
that the electronic structure calculated using the relativistic
SIC-LSD method describes the ground-state properties of fcc
praseodymium well. A detailed discussion of the electronic
structure of the rare earth metals, calculated using the rela-
tivistic SIC-LSD method, will be published elsewhere.56

B. X-ray scattering cross sections

We have performed calculations of the x-ray scattering
cross section at theMIV and MV absorption edges of Pr for
all the f-electronic configurations shown in Table I. These
were evaluated with an arbitrary value ofG=1 eV which is
smaller than one would expect experimentally, but as the
purpose of this section is to investigate the capability of the
theory only rather than to make a strict comparison with
experiment, it does not pose a problem. The effect of increas-
ing G is simply to broaden and smooth out the calculated
curve. A selection of the results is shown in Figs. 3 and 4. In
each figure the cross section for left-handedly circularly po-
larized (LCP) photons, i.e., with positive helicity, and right-
handedly circularly polarized(RCP) photons, i.e., with nega-
tive helicity, are shown. The geometrical setup of these
calculations assumes that the propagation directions of the
incident and outgoing photons are parallel to the exchange

field, i.e., in our case parallel to the spin magnetic moment.
Figures 3 and 4 show the cross section at theMIV and MV
edges, respectively, as the SIC configuration is changed sys-
tematically such that thez component of the orbital moment
varies from negative to positive values while at the same
time the calculation shows that the spin moments remain
nearly constant in magnitude and parallel to the exchange
field. As the orbital moment increases we see that the cross
section at theMIV edge changes only slightly for LCP x rays
while for RCP x rays it changes dramatically. At the most
negative orbital moment theMIV RCP cross section is very
small, being completely overshadowed by the LCP peak. At
the other end of the scale where the orbital moment is most
positive the cross section forMIV RCP x rays is considerably
larger than that for LCP x rays. It should also be noted that
the cross section peak for RCP x rays is 1−2 eV lower in
energy than the peak for LCP x rays.

When the resonant scatterings"v<eF−eLt
d is close to

the MV edge, it is the RCP cross section that remains ap-
proximately constant with changing orbital moment, al-
though a significant shoulder does appear on the low-energy
side of the curve as the orbital moment increases. The LCP
peak decreases dramatically with increasing orbital moment.
At the MV edge, peaks from RCP and LCP x-ray scattering
are again separated by 1−2 eV, but the ordering of the peaks
is reversed from the case of theMIV edge scattering.

Figures 3 and 4 indicate that theMIV and MV cross sec-
tions are directly related to the orbital moment of the con-
stituent atoms, although they do not indicate the direct pro-
portionality between magnetic moment and scattering cross
section suggested by Blume.1 For example, theMV edge
cross section for LCP photons hardly varies in the upper two
pictures in Fig. 4 despite a change of nearly 2mB in the
orbital moment. To clarify this point further, we show in Fig.
5 the cross section at theMIV and MV edges for SIC con-
figurations that produce an orbital moment close to zero with
the spins of the two occupiedf states parallel. While neither
the spin nor the orbital moment change significantly, the
cross section certainly does. At theMV edge the negative
helicity curve is approximately constant while the positive
helicity curve alters dramatically. On the other hand, at the
MIV edge it is the positive helicity curve that is approxi-
mately constant while the negative one shows significant
variation. This figure implies that the resonant x-ray scatter-
ing does not measure the total orbital moment, but is a mea-
sure of the orbital angular momentum of the individual one-
electron states.

The important message of Figs. 3–5 is that the scattering
cross section is not directly proportional to the total orbital
moment of the material. However, both the spin and orbital
moment have a strong influence on the size of the cross
section peaks.

IV. DISCUSSION

The standard theory of x-ray magnetic scattering is based
on the work of Blume.1 He derived an equation for the non-
resonant x-ray scattering cross section using a nonrelativistic
approach with relativistic correction to order 1/c2. The re-

FIG. 2. The calculated total energy per atom of fcc praseody-
mium relative to the ground-state energy as a function of orbital
moment in Bohr magnetons for the states shown in Table I. All
magnetic moments were self-consistently determined and the spin
moment was approximately constant for all the configurations
shown. If an antiparallel arrangement of spins was selected the
energies were considerably higher.
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sulting expression for the cross section, using his notation, is

S d2s

dV8dE8
D

a→b

= S e2

mc2D2

dsEa − Eb + "vk − "vk8dUkbuo
j

eiK ·r juale8 · e

− i
"v

mc2kbuo
j

eiK ·r jSi
K 3 Pj

"k2 ·A +
sj ·B

"
DualU2

, s38d

where Ea and Eb are the energies of the initial and final
many-electron statesual and ubl, respectively.K ;k −k8,
wherek and k8 are the wave vectors of the incoming and
scattered photons, respectively, andr j, Pj, andsj are electron
(rigorously density functional state) coordinate, momentum,
and spin operators.

A ; e8 3 e s39d

and

B ; e8 3 e − sk 8̂ 3 e8d 3 sk ˆ 3 ed − sk ˆ 3 edse8 ·k ˆd

+ sk 8̂ 3 e8dse ·k 8̂d s40d

depend only on the direction and polarization of the incident

and emitted photons. The first term in Eq.(38) is the Thom-
son term, responsible for the charge scattering. The term con-
taining A depends on the orbital momentum and the term
containingB depends on the electron spin. This expression
clearly shows that there are three distinct contributions to the
magnetic scattering cross section, one from the orbital mo-
ment, the second from the spin moment, and the third from
the interference term between the spin and orbital moment.
We also note the obvious point that if the orbital and spin
moments of the individual electrons sum to zero, then the
magnetic scattering vanishes. Most interestingly, Eq.(38)
implies that, with a suitable choice of the photon energy,
geometry, and photon polarization it is possible to separate
contributions to the cross section from the orbital and spin
moments. However, this expression is not directly applicable
in our resonant magnetic scattering studies because its deri-
vation involves an approximation which is strictly not valid
close to the resonance, while our approach is only valid
around resonance because we ignore the negative energy
contribution to the scattering amplitude, i.e., the terms that
involve creation of virtual electron-positron pairs in the in-
termediate states in the second order perturbation theory(see
Sec. II C of Ref. 10). Another difference from Blume’s
theory is the fact that our work is based on fully relativistic
quantum mechanics, while Eq.(38) exploits the semirelativ-

FIG. 3. The scattering cross section at theMIV edge for praseodymium for electron configurations 1, 3, 5, 7, 9, and 11 from Table I. Each
figure is for a different pair of localizedf electrons. The calculated total orbital moment in Bohr magnetons is shown in the top left of each
figure. The full curve is the cross section for x rays with positive helicity and the dashed curve is that for negative helicity x rays. A general
trend of increasing magnitude of the cross section for negative helicity incident photons as the orbital moment increases from negative to
positive is clearly observable in these curves. The positive helicity curve remains approximately constant with increasing orbital moment.
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istic approximation. This difference makes direct comparison
of the two theories difficult. This has been discussed by
Strange41 who has rederived Eq.(38) as the nonrelativistic
limit of a fully relativistic theory of x-ray scattering. For
these reasons and the fact that there is no one-to-one corre-
spondence between the terms in our expression for the scat-
tering amplitude and Blume’s expression, there is no
straightforward way to compare the two theories. It is often
stated that Blume’s expression(38) shows that the cross sec-
tion for magnetic scattering will yield the orbital and spin
moment of a material separately. Although this will usually
be the case it is not rigorously true. Equation(38) cannot be
applied immediately because the initial and final statesual
and ubl are general many-body states that have not been de-
fined in detail. For implementation purposes they must be
described as many-electron states that will contain the index
j which is being summed over in Eq.(38). In a magnetic
material the radial part of the basis functions of the single
particle wavefunctions, as well as the angular part, depend
on ml. So, we would expect the total scattering amplitude to
have a contribution from the orbital angular momentum as-
sociated with each single-particle state, but this is not the
same as being proportional to the total orbital angular mo-
mentum. For example a two-particle state composed of two

single-particle states withml = ±1 has the samez component
of orbital angular momentum as a two-particle state com-
posed of two single-particle states withml = ±3, but Eq.(38)
does not suggest that they will have the same scattering am-
plitude. Nonetheless, Blume’s expression implies that a
strong dependence of the cross section on the components of
the magnetic moment is likely and indeed, this is exactly
what we have found, an approximate, but by no means rig-
orous proportionality between orbital moment and magni-
tude of the cross section which is dependent on the polariza-
tion of the x ray. Furthermore, Fig. 5 explicitly demonstrates
the dependence of the cross section on the magnitude ofml
of the occupied individual electron states.

The question that now arises is how our computed x-ray
scattering results can be interpreted in terms of the detailed
electronic structure of praseodymium. In order to understand
this we analyze the electronic structure of fcc Pr for the cases
where the orbital moment is equal to −4.79mB, −0.05mB, and
4.69mB in detail. We expect the scattering cross section to
reflect the Prf-electron density of states. Although the shape
of the cross section is partially determined by the density of
states(DOS) the total DOS changes very little when pairs of
electrons with differing orbital moments are localized.
Therefore, a simple interpretation of the changes in the cross

FIG. 4. The scattering cross section at theMV edge for praseodymium for electron configurations 1, 3, 5, 7, 9, and 11 from Table I. Each
figure is for a different pair of localizedf electrons. The calculated total orbital moment in Bohr magnetons is shown in the top left of each
figure. The full curve is the cross section for x rays with positive helicity and the dashed curve is that for negative helicity x rays. A general
trend of decreasing magnitude of the cross section for positive helicity incident photons with increasing orbital moment is clearly observable
in these figures. The negative helicity curve remains fairly constant in magnitude with increasing orbital moment although the feature on the
low-energy side of the peak does become more pronounced.
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FIG. 5. The scattering cross section at theMIV

and MV edges for praseodymium. Each figure is
for a different SIC configuration but which pro-
duces roughly the same orbital and spin moment.
The thick line is for negative helicity incident x
rays and the thin line is for positive helicity inci-
dent x rays:(a) Localizing theml =−1 andml =
+1 electrons with spin up, yields an orbital mo-
ment of −0.07mB and a spin moment of 2.46mB,
(b) localizing theml =−2 and ml = +2 electrons
with spin up, yields an orbital moment of
−0.12mB and a spin moment of 2.47mB, (c) lo-
calizing the ml =−3 and ml = +3 electrons with
spin up, yields an orbital moment of −0.05mB
and a spin moment of 2.52mB.
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section with the orbital moment in terms of the total DOS
cannot be made. In relativistic theories of magnetism differ-
ent values of total angular momentumj with the samez
componentmj are coupled and further decomposition has
little meaning.45 To facilitate understanding of the differ-
ences in the spectra as orbital moment varies we show a
selection of density of states curves, decomposed by the azi-
muthal quantum numbermj in Figs. 6–8. There are several
points that should be noted about these pictures.

The mj = ±7/2 (these are purej = l +1/2 states) figures
describef electron states with a well-definedj value, while
all the others showf states with two different values ofj
(j = l +1/2 and j = l −1/2). In all the pictures exceptmj
= ±7/2 there are two main peaks, however these two peaks
do not necessarily have the same weight. The separation of
the peaks represents the spin and spin-orbit splitting of the
individual values ofmj. The splitting between the unoccu-
pied f states is around 0.1 Ry while the splitting between the
occupied and unoccupied states is about 0.7 Ry. The smaller
narrow peaks in some of these figures represent the hybrid-
ization of different f states between themselves. Some of
these densities of states are markedly broader than others and
this is a reflection of the degree of hybridization with the
conductions-d electrons.

In Fig. 6 we have chosen to apply the self-interaction
corrections to the(ml =−3,ms= + 1

2) and (ml =−2,ms= + 1
2)

(configuration 1 in Table I) in the nonrelativistic limit, and
this is reflected in the density of states having a very large
and narrow peak at around20.7 Ry formj =−5/2 and −3/2.
There is nothing for these states to hybridize with so they are
very tall and narrow atomic-like states. Formj =−5/2 and
−3/2 the density of states has a more bandlike component
corresponding to a single electronic state just above the
Fermi energy. For most of the other values ofmj there is a
density of states corresponding to two electron states close to
eF and for mj =7/2 thedensity of states close toeF corre-
sponds to a single purej = l +1/2 state.

In Fig. 7 we have selected thef electrons which corre-
spond to(ml =−3,ms= + 1

2) and (ml = +3,ms= + 1
2) in the non-

relativistic limit for the SIC(configuration 6 in Table I). Here
it is themj =−5/2 and themj = +7/2 components of the den-
sity of states that have the localized state around20.7 Ry
below the Fermi energy. This means there is nomj =7/2
character aroundeF at all in this case. For most other values
of mj we can clearly see that there are twof states close to
eF. Detailed examination of these peaks shows that the domi-
nant cause of the splitting is the exchange field, although the
splitting is also influenced by the spin-orbit interaction. For
mj =−7/2 there is only one state close toeF of course. In Fig.
8 we have chosen to apply the self-interaction corrections
to the f electrons which correspond to(ml = +3,ms= + 1

2) and
(ml = +2,ms= + 1

2) in the nonrelativistic limit(configuration
11 in Table I). This time it is themj =5/2 andmj =7/2 states
that are localized, and again there is nomj =7/2 character
aroundeF. The mj =−5/2 andmj =−3/2 state have the spin-
split behavior close toeF in this case. The other values ofmj
behave as before.

It is clear from Figs. 6–8 that in somemj channels there is
a small amount of bandlikef character below the Fermi en-

ergy. This indicates that there are two types off electrons in
our calculation, the localizedf electrons which determine the
valence and the delocalizedf electrons which determine the
valence transitions.18 It is the delocalizedf electrons that are
principally responsible for the noninteger values of the or-
bital moments shown in Figs. 3 and 4(although there is also
a small contribution from the valences-d electrons).

Comparison of the corresponding diagrams in Figs. 6–8
shows dramatic differences. Even though the total density of
states is fairly insensitive to whichf-electron states are oc-
cupied, themj-decomposed density of states is obviously
drastically altered depending on which electrons are local-
ized. In particular thef states just above the Fermi energy
form a significant number of the intermediate states in the
formal theory described earlier. Therefore if key ones are
localized they become unavailable as intermediate states for
the spectroscopy and the cross section may be substantially
altered. Of course, occupying onef state means that some
other f state is not occupied which may then also play a role
as an intermediate state for the spectroscopy. Indeed, how
much the unavailability of particularmj substates affects the
spectra depends on other factors too, including theE1 selec-
tion rules which are composed of angular matrix elements.
Each angular matrix element contains four terms in the form
of a product of Clebsch-Gordan coefficients and a geometry
and polarization dependent factor. A further influence is the
fact that the LMTO coefficientsAtiL

jk [defined in Eq.(17) and
completely determined by a self-consistent band structure
calculation] associated with thef electrons are found to be
fairly independent of the rare-earth element under consider-
ation but their magnitude has a clear but complex linear pro-
portionality toml.

Detailed analysis of the major contributions to the cross
section suggests that the highest peak is formed by the core-
to-valence transitionssd3/2,mjd→ ff5/2,mj +s−d1g for theMIV

LCP(RCP) edge scattering andsd5/2,mjd→ ff7/2,mj +s−d1g
for theMV LCP(RCP) edge scattering. The former transition
for MIV case is in agreement with the nonrelativistic selec-
tion rule which forbids aD j =2 transition, although this tran-
sition is not totally forbidden in the relativisticE1 selection
rule. In theMV case, theD j =0 transition is observed to form
part of the shoulder rather than contributing to the main
peak. Furthermore, within the transitions forming the main
peak, the contribution to the LCP scattering at both theMIV
andMV edge is the largest from the most positive allowedmj
value of the core state. On the other hand, the most negative
mj value of the core state gives the largest contribution to the
RCP scattering. This indicates the fact that the Clebsch-
Gordan coefficients which are used to calculate the selection
rules are a dominant factor in determining the relative size of
the cross section peaks. The origin of this is simply in the
properties of the Clebsch-Gordan coefficients which vary
smoothly between either 0 and 1 or 0 and21 depending on
the values of the other quantum numbers.

From these considerations, we see that the separation of
the LCP and RCP peaks by 1 to 2 eV is a reflection of the
spin splitting of the states. In relativistic theoryms andml are
not good quantum numbers. Furthermore, because of the
magnetism, different values ofj with the samemj are also
coupled. However, it is still possible to associatekszl, klzl
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FIG. 6. Thel =3 contribution to the density of states of praseodymium decomposed by themj quantum number for the case when the
ml =−3 andml =−2f states with spin up are occupied(localized). In the top right of each figure is the self-consistently calculated orbital
moment. Each figure is also labeled with the relevant value of themj quantum number.
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FIG. 7. Thel =3 contribution to the density of states of praseodymium decomposed by themj quantum number for the case when the
ml =−3 andml = +3f states with spin up are occupied(localized). In the top right of each figure is the self-consistently calculated orbital
moment. Each figure is also labeled with the relevant value of themj quantum number.
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FIG. 8. Thel =3 contribution to the density of states of praseodymium decomposed by themj quantum number for the case when the
ml =−3 andml =−2f states with spin up are occupied(localized). In the top right of each figure is the self-consistently calculated orbital
moment. Each figure is also labeled with the relevant value of themj quantum number.
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with these quantum numbers and also to recognize the domi-
nant j in atomiclike unhybridized bands. For example, in the
case of LCP scattering at theMIV edge, the largest contribu-
tion to the cross section comes from(k=3,mj = + 5

2)-like or-
bitals. The two 4f states which have thismj as the main
contributor are characterized byskszl. + 1

2 ,klzl. +2d and
skszl.−1

2 ,klzl. +3d. Electronic structure calculation shows
that the former state is dominated byk=−4 and the latter by
k=3. Therefore theMIV LCP peak is most affected by the
availability of the spin-downklzl.3 state as an intermediate
state. Similar analysis shows that theMIV RCP peak is most
affected by the spin-upklzl.−3 state, MV LCP by the
spin-upklzl.3, andMV RCP by spin-downklzl.−3 state.

Although this analysis is a gross simplification, it does
explain why the relative peak energy positions in the LCP
and RCP scattering cases swap between theMIV and MV
edges(see Fig. 5). Of course this is true only if these states
are still available after the chosen localizations by SIC. The
effect of localization on the MXRS spectrum is most dra-
matic if SIC is applied to these key states, changing the peak
energy separation as well as the scattering amplitude be-
tween the LCP and RCP scattering cases.

Some empty valence bandf states participating in the
scattering process have nearly equal mixture of the twoj
characters, i.e.,j = l +1/2 and j = l −1/2. If there is strong
spin-up and spin-down character in the unoccupied valence
states described by a specificmj then both spin states may be
available as the intermediate states for the spectroscopy.
Thus we may clearly see a two-peak structure in themj de-
composed amplitude for a certain polarization at the absorp-
tion edge. Figure 9 shows the coremj decomposed LCP scat-
tering amplitude and the two-peak structure mentioned above
is clearly visible formj = + 1

2 at theMIV edge.
In certain cases we can interpret the apparent relation be-

tween the magnetic cross section and thez component of the
total orbital moment as follows. Becauseklzl+kszl=k jzl
holds, then we see that if we apply self-interaction correc-
tions to states systematically according to Hund’s rules, what
is effectively done is to occupy the states in order ofmj. As

stated earlier themj decomposed relativistic magnetic scat-
tering cross section has a “proportionality” tomj due to the
Clebsch-Gordan coefficient in the angular matrix element ex-
pression defining theE1 selection rules. Whether this propor-
tionality is direct or inverse depends on the polarization of x
rays. In addition, according to the electronic structure calcu-
lation, as the unhybridized state goes fromsklzl.−3,kszl
. 1

2d to sklzl. +3,kszl. 1
2d, the dominantj changes fromj

= 5
2 to j = 7

2 gradually. This tells us two things. First we notice
that if a certain state has a major impact on the scattering
cross section at theMIV edge for RCP photons, then this
same state has a relatively minor effect on the cross section
for LCP photons at the same edge because of the Clebsch-
Gordan factor in the expression for theE1 selection rules as
mentioned above. Secondly we see that this same state also
has only a minor effect on theMV cross section because the
value of j for the intermediate states involved in major tran-
sition differ betweenMIV andMV.

As the SIC configuration varies fromsklzl.−3,kszl
. + 1

2d and sklzl.−2,kszl. + 1
2d to sklzl.−3,kszl. + 1

2d and
sklzl. +3,kszl. + 1

2d so that there is a systematic change in
the z-component of the total orbital moment, theMIV RCP
cross section increases because the second, third and so on,
strongest contributors to the cross section become addition-
ally available as intermediate states as they are released from
the SIC localization. However, they have progressively less
impact as we proceed through this series of quantum num-
bers since the majorj gradually changes toj = 7

2. The cross
section at theMIV edge for LCP photons is not affected much
by this change in quantum numbers since neither the initial
nor the final SIC combination in the above series involves
the major contributors toMIV LCP cross section. On the
other hand, theMV edge LCP cross section is reduced as
more and more significant contributors are removed from the
available intermediate states, while the cross section at the
MV edge for RCP photons is not much affected for the same
reason asMIV LCP case. Obviously the above change in SIC
configuration is very artificial. However as the states are
filled up according to Hund’s rule as we proceed through the

FIG. 9. Coremj decomposed LCP amplitude
at theMIV and MV edges. This figure is for the
case when theml =−3 and ml =−2 states are
occupied.
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rare-earth series, we would expect to observe changes in the
cross section governed by these considerations for rare earths
where the intermediate states can be considered as atomic-
like. However, a very different interpretation of the x-ray
spectra may be required in the case where delocalized band-
like intermediate states are of primary importance, as is the
case in resonant x-ray scattering at theK andLII,III edges.

Finally, we are unaware of any experimental measure-
ments of the MXRS spectra of praseodymium or it com-
pounds at theMIV or MV edge. However, a careful combined
neutron57 and x-ray58 (at theLII ,III edges) investigation into
the magnetism of HoxPr1−x alloys has concluded that the Pr
ion does have a 4f moment at all values ofx. Deenet al.59

have performed MXRS measurements at theL edges in
Nd/Pr superlattices and found a large peak at the absorption
edge and a high energy shoulder corresponding to dipolar
transitions to the broad 5d band. We hope that our calcula-
tions will stimulate detailed experimental x-ray studies of
MIV and MV edges of Pr, in pure Pr, and in its alloys and
compounds.

V. CONCLUSIONS

In conclusion, a theory of magnetic x-ray scattering that is
based on the LSD with self-interaction corrections and sec-
ond order time-dependent perturbation theory has been de-
scribed. We have illustrated the theory with an application
to fcc praseodymium and used this example to illustrate
the dependence of the scattering cross section on spin and
orbital magnetic moments. It has been shown that the theory
quantitatively reproduces the dependence on the spin and
orbital magnetic moments originally predicted qualitatively.1
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