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Self-interaction-corrected relativistic theory of magnetic scattering of x rays:
Application to praseodymium
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A first-principles theory of resonant magnetic scattering of x rays is presented. The scattering amplitudes are
calculated using a standard time-dependent perturbation theory to second order in the electron-photon interac-
tion vertex. In order to calculate the cross section reliably an accurate description of the electronic states in the
material under investigation is required and this is provided by the density functional theory employing the
local spin density approximation combined with the self-interaction corrections. The magnetic x-ray resonant
scattering theory has been implemented in the framework of the relativistic spin-polarized linear muffin tin
orbital with atomic sphere approximation band structure calculation method. The theory is illustrated with an
application to ferromagnetic praseodymium. It is shown that the theory quantitatively reproduces the depen-
dence on the spin and orbital magnetic moments originally predicted qualitai®eimne, J. Appl. Phys57,
3615(1985] and yields results that can be compared directly with experiment.

DOI: 10.1103/PhysRevB.70.235127 PACS nunier78.70.CK, 75.25tz, 71.15-—m, 71.20.Eh
I. INTRODUCTION the range of materials for which numerically accurate elec-
_ _ _ tronic structure calculations can be performed. In particular
Resonant magnetic x-ray scatteriGglXRS) is a well-  the local density approximatiofi DA)+U method® and the

developed technique for probing the magnetic and electroniself-interaction corrected local spin density approximation to
structures of materials. The foundations of the theory ofdensity functional theoi}~*’ have met with considerable
MXRS were laid down by Blumé.Later on Blume and success in describing materials with localized electrons. The
Gibbg developed the theory further to show that the orbitallatter method reduces the degeneracy of thetates at the
and spin contributions to the magnetic moment can be meaermi level and hence also circumvents all the convergence
sured separately using MXRS with a judicious choice of exproblems associated with the local spin dengltgD) ap-
perimental geometry and polarization of the x rays. Hannorproximation to DFT in electronic structure calculations for
et al?® presented a nonrelativistic theory of x-ray resonanceare-earth materials. Notably, the LSD self-interaction cor-
exchange scattering and wrote down explicit expressions fafection (SIC) has provided a very good description of the
the electric dipole(E1) and quadrupol€E2) contributions. rare-earth metal and rare-earth chalcogenide crystal
This work is based on an atomic model of magnetism andtructures? A relativistic version of the SIC formalism has
has been applied successfully to a variety of materials inbeen derivet? that has been shown to yield an excellent
cluding UAs and Gd by Fasolinet al* Rennert produced a  description of the electronic structure of rare-earth materials
semirelativistic theory of MXRS written in terms of Green'’s in the few cases to which it has been applied. This method
functions, but no such calculations have been performedwyas reviewed by Temmermaat all®
More recently, theory based on an atomic model of the elec- The fact that electromagnetic radiation can be scattered
tronic structure of materials has been written down byfrom the magnetic moments of spin-1/2 particles was first
Lovesey and co-workers and applied successfully to a vari-shown by Low and Gell-Mann and Goldberger half a century
ety of materials. Takahashét al. have reported a theory ago?® Later on it was Platzman and Tzéawho first pro-
which includes the band structure in the calculation ofposed the use of x-ray scattering techniques to study the
anomalous x-ray scatterifgA first-principles theory of magnetization density of solids. At that time progress in
MXRS based on a time-dependent second order perturbatiatudying magnetic structures using x rays was severely ham-
theory and density functional thed¥ was produced by pered because the cross section for magnetic scattering is
Arola et al}®* and applied successfully to several transitionsmaller than the cross section for charge scattérimga
metal materiald? This theory is restricted in its range of factor of (hw/mc)2. It was Gibbset al?? who first observed
application because of the limitations imposed by the locahk large resonant enhancement of the cross section when the
density approximation to density functional theqiFT) energy of the x ray is tuned through an absorption edge.
which means that the theory can only be applied to simpleSince that time technological advances have produced high
and transition metal materials. This is particularly unfortu-resolution, high intensity synchrotron radiation sources that
nate because it is in the rare-earth and actinide materials thaave transformed magnetic x-ray resonant scattering into a
the most exotic magnetism in the periodic table occurs.  practical tool for investigating magnetic, and electronic
In recent years advances in electronic structure calculastructures of materials. Nowadays the world’s leading syn-
tions beyond the local density approximation have broadenedhrotron facilities have beamlines dedicated to this
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techniqué® and applications of resonant x-ray scattering arements. They are also extremely important when we are
burgeoning. Reviews of the experimental state-of-the-artonsidering properties dependent on orbital moments and
MXRS techniques have been written by StirBhgand their coupling to electron spins.
Cooper® The relativistic total energy functional in the local spin
Other approaches to interpreting MXRS spectra exist, pardensity approximation is
ticularly the successful methods based on group theory and
angular momentum algebra that result in sum rules as de- | spr=,.\7_ X 3
scribed by Borgattf and by Carr& and Luo?® The present BN ] = Egnln(r)] + Uln(r)] + J VEnn(rdr
work should not be regarded as a rival theory to these, but
rather as an attempt to extend the range of density functional + ELSO[A(r)] _f B(r) - m(r)dlr (1a)
methods to describe magnetic scattering of x rays in the xe ’
same way as is done for photoemission and other _ )
spectroscopie® As a DFT-based theory our work is, of wherer?(r):[nT(r),ni(r)]{z[q(r),m(r)]} labels the spin up
course, based on very different approximations to this earliegnd spin down charge density:
work, making direct comparison between the two theories -~
problematic. Exinln(r)]= 2 (s [Tlw), (1b)
We have recently implemented a first-principles theory of A
MXRS that is based on a standard time-dependent perturba-
tion theory where the scattering amplitudes are calculated to LSDr—) 1 _ 3
second order in the electron-photon interaction vertex. To Ee (N()]= [ n(r)edn(r)]d°r. (1c)
describe MXRS from a given material it is necessary to have
an accurate description of the electronic structure of the Majere T is an operator describing the kinetic energy and rest
terial in question. This is provided by using the SIC within 1555 of the electrons
the LSD approximation to the density functional theory
which is implemented using the relativistic spin-polarized ~ ch
LMTO-ASA band structure calculation meth8¥The theory T= T V +mc(B-1y), (2
of MXRS is equivalent to that of Arolat al.,'? but has been
rewritten in a form that is appropriate for implementation inwhere & and 8 are the usual relativistic matric&sU[n(r)]
connection with the LMTO-ASA method where there is sub-represents all two particle interactions including the Breit
stantial experience of SIC methods. The major step forwarshteraction.Ve*{(r) is the external potential anB®*(r) is an

reported in this paper is the integration of the SIC into theexternal magnetic field. The densityr) and the spin density
MXRS theory which enables us to describe rare earth angy(r) are given by

actinide materials on an equal footing with transition and
simple materials. - T

In this paper, we give a detailed description of the MXRS n(r) EA: YADYAD), @
theory and illustrate it in a calculation for praseodymium.
The results are analyzed and discussed. Finally we show that "
the present work is consistent with the earlier theory and mM(r) == up X YA By (), (4)
demonstrate how the MXRS cross section reflects the prop- A

erties of these materials. wherea, is the 4x 4 matrix spin operator and represents
the quantum numbers. In Egeh and (5) below we have
Il. THEORY implied a representation in which spin is a good guantum

number and the sums are over the occupied staig®i(r)]
is the exchange correlation energy of a gas of constant den-

The SIC-LSD approximatioi-32is anab initio electronic  sity and Eq.(1c) is the local spin density approximation.
structure scheme that is capable of describing localization If we minimize the functiona{1a) with respect to changes
phenomena in solid$~17 In this scheme the spurious self- in the density and spin density we obtain a Dirac-like equa-
interaction of each occupied electron state is subtracted fronion
the conventional LSD approximation to the total energy
functional, which leads to a greatly improved description of [ cA
static Coulomb correlation e?fects ){)verpthe LSD app?oxima- (i_a' V +m(B=12) + V() + pBos Beﬁ(r))%(r)
tion. This has been demonstrated in studies of the Hubbard
model®32* in applications to @ monoxide$>’ and =), (5a)
cuprateg>3> f-electron system¥:3637 orbital ordering®®
metal-insulator transition®, and solid hydrogef?

A. The relativistic SIC-LSD formalism

where

For many applications it is necessary to account for all 2 n(r') SELSO[A(r)]
relativistic effects including spin-orbit coupling in an elec- Veff(r) = veXi(r) + J ; dor’ + —X€ ,
tronic structure calculation. Relativistic effects become pro- 4meg) |r—r'| an(r)
gressively more important as we proceed to heavier ele- (5b)
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SELSPIA(r)] density only like E-SP. By a reformulation it may be
Be(r) =B*(r) - amn) (50)  showrL32 that ESICLSD can in fact be regarded as a func-
tional of the total spin density only. The associated
where A(r)=[n!(r),n(r)}{=[n(r),m(r)]}. The local spin exchange-correlation energy functiorﬁﬂc[ﬁ(r)] is, how-
density approximation discussed above provides a very su@ver, only implicitly defined? for which reason the associ-
cessful description of a variety of properties of condensedted Kohn-Sham equations are rather impractical to exploit.
matter, but suffers from a drawback because it contains self-or periodic solids the SIC-LSD approximation is a genuine
interactions of the single particle charges. In an exact theorgxtension of the LSD approximation in the sense that the
these spurious self-interactions would precisely cancel. In theelf-interaction correction is only finite for localized states,
LSD the cancellation is only approximate and in materialswhich means that if all valence states considered are Bloch-
where there are well-localized electrons this can lead to siglke single-particle states=S'®“SP coincides with E-SP.
nificant errors. The SIC-LSD approach to this problem is toTherefore, the LSD minimum is also a local minimum of
augment the LSD functional with an extra term that removes=S'°-SP, In some cases another set of single-particle states
this deficiency*® may be found, not necessarily in Bloch form but, of course,
ESICLSD_ ELSD | £SIC (63) egl%i_\(ngent to Bloch states, to provide a local minimu_m for
' E . For this to happen some states must exist which can
where benefit from the self-interaction term without losing too
much band formation energy. This will usually be the case
ESUn,(N} == 2 {Uln N1+ ESPM,T,  (6b)  for rather well localized states such as thistates in tran-
Y sition metal oxides or thefdstates in rare-earth compounds.
wheren,(r)=[n!(r),n}(r){=[n,(r),m,(r)]} and Thus, ES“*Pis a spin density functional, which may be
L & ) sztsaetgsto describe localized as well as delocalized electron
— Y Y 37 43 .
Uln, (1= 547-,6(Jf Ir=r’| drdr, (60) We have solved the SIC-LSD equations self-consistently
for a periodic solid using the unified Hamiltonian approach
described by Temmermagt al*? The equations have been
E)&E’D[ﬁy(r)]:f (1) ex N (r)1d%, (6d)  solved on a periodic lattice using the relativistic LMTO
method in the tight-binding representation.

wherey runs over all orbitals that are S| corrected and
n,(r) = w;(r)t//y(r), (60) B. The relativistic spin-polarized LMTO method

In Sec. Il C,uy,/(r) will be a general notation for the
M(r) = = uad (1) Boay(r). (6f)  unoccupied intermediate states in the second order time-
For the exchange-correlation term in the SIC energy we neeflePendent perturbation theory. In the case of a material with
to consider a fully spin-polarized electron. The correspondransiational periodicity,,(r) will be a Bloch state
ing single particlelike wave equation is obtained by taking "
the functional derivative oES'“-SP with respect toy(r) Upr(r) = ¢5(r), (8)
and we obtain

for which
ch ff eff
( i a-V +mcz(,8 |4)+Ve (r) + pgBo - B¥(r) ijk(r+R):eik'ijk(r), (9)
+ VS'C(r)> (1)= 2 Nyt (r), (7a  Wherek is the wave vector defined to be in the first Brillouin
7 vy o Yy zone,j is the band index, anR is any Bravais lattice vector.
o In the LMTO method the Bloch wave functions may be ex-
where the SIC potential is given by panded in several way8.For the calculation of observables
e? n.(r’ SELSOrA. (r it is most convenient to make an expansion in terms of the
V() :—(4 VE ,) r’ X;h[ ) single-site solutions of the radial Dirac equation and their
meo) 1] #(1) energy derivatives. For the relativistic spin-polarized case
SELSPIA ()] this has been achieved by EHéft*and it is this method that
- /LBBO'4—L&n B (7b)  we employ. The Bloch state in this representation is written
Y as
The task of finding the single particlelike wave functions is
now considerably more challenging than for the bare LSD Niype N _ o
because every state experiences a different potential. Tow*(r)= X > D [AK ¢ (r — 7Y) + BK ,a(r — 7Y)].
maintain the orthogonality of thes(r) it is necessary to t=1i=1 A
calculate the Lagrange multiplier matrix,,. (109

As written in Eqgs(6), ES'°tSP appears to be a functional
of the set of occupied orbitals rather than of the total spinHere
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rnjk: ]k* Jk' 4 IZ VA
), (10b) ! %%%(Am in(Bual Bl buear)

e . . .
+ BB (bual Bl duiar) + A B (buial Bl buiar)

¢vtA(r |(t)) = 2

!
K

R CHR PG
if (et XL (L)
where theg(t?mi(E,ri(t)) and f“}mj(E,ri(t)) are solutions of the
. . K K . K K . . L k .
radial Dirac equation for a spin-polarized system, afiti + B AL A Bual Bl duanr) - (13b)
V' Details of the solution are given in Strangeal4®

=r - TI
and ¢,,m(ri“)) is its energy derivative. These satisfy

In all our calculations thé field is along thez axis which
therefore acts as an axis of quantization.

(Burlbua) =1, (bualbun) =0, (11 C. The x-ray scattering cross section

where the subscripi corresponds to the energy, about In this section we will outline the formal first-principles
which the muffin-tin orbitals of Eq(10b) are expanded, and theory of magnetic x-ray scattering for materials with trans-
the normalization integrals have been done within the atomitational periodicity. The theory is based on the fully relativ-
sphereS. The single particle functions,(r) and ¢VtA(f) istic spin—polar.ized SIC-LMTO method_in conjunction .with_
are evaluated at energy,. In this relativistic formulation —Second order time-dependent perturbation theory. To simplify
A= (xmy) labels the boundary condition for the independentthe prtlesentatlon a straightforward canonical perturbation
single-site solutionﬁvm(r—ri(o) of the Dirac equation about theory*! is presented rather than a more sophisticated dia-

i o
the basis atom afi(t). Nype iS the number of different types of grammatic methodt
atom in the unit cellN; is the number of equivalent atoms of 1. Basic theory of x-ray scattering

« w k k . .
typet. The coefficientsiyy andByy are written in terms of 6 theory of x-ray scattering is based on the second or-

the LMTO structure constants and potential parameters, anflar golden rule for the transition probability per unit time:
are completely determined by a self-consistent LMTO calcu-

lation of the electronic structuf€.Key observables are then 2| o~ CFIHL DA HL D 2
given in terms of these quantities. In particular the spin mo- Wit = —~ (fHp iy + > —e-g | 4E&-R).
ment is ! b
(14)
mg= 2 y mdk, (128 whereli), |I), and|f) are the initial, intermediate, and final
Il e states of the electron-photon systel, E,, andE; are the
where corresponding energiebl;, is the time-independent part of
" - the photon-electron interaction operator. The formalism to
my :2 2 2 (A A A Dual Boad ) reduce this general expression to single-electron-like form
LAy has been published previoudfTherefore we will not repeat

+ B{ikA B{ikA (burl Boad bn) E)hrisiittaiﬁprllsr:féntt);ttioonn.ly the equations that are key to the
jk* pik y In relativistic quantum theory it is the second term in Eq.
+ A B (ual Bzl buan ) (15) that is entirgly responsibleyfor scattering as it is secocrl1d
ILSUNL order in the vector potential. It is convenient to divide this
+ Biia Aur {Bual Boar| duea 1)) (125 term into four compclaonents. To see this note that there are just
with - being the Fermi energy and is the Bloch state two types of intermediate stat®, those containing no pho-
eigenenergy. The orbital moment is tons and those containing two photons. We can also divide
up the scattering amplitude according to whether or not the
intermediate states contain excitations from the “negative-
energy sea of electrons,” i.e., the creation of electron-
positron pairs. It can be shown that the x-ray scattering am-
where plitude in the case of elastic scattering can be writteéfi&s

m=> |  mdk, (139

faN; 0N (@) = FR0 0 (@) + TR0 (@) + TR0 (0) + F0 ()

. (FIHG DS HD s (I DS HG 1)
x>0 Ei-E l,ex<0 E-E
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j dPrul ()X}, (N u (1) j AUl (1 )X (r YU (r)
-3 [1]

AA' €A_6A7+ﬁw

fd‘"’rUR(r)XqA(r)uA/(r)f ol (r )X (1A (r)
+ 2 [2]

AA! €A_EA/_fLa)

fd?’ru%(r)xé,w(r)uA,(r)f & ul, ()X (r ox(r’)
-2 3]

AA €A_€Ar+ﬁw

fd?’rv%(r)qu(r)uA,(r)f d3r’u1,(r’)X;,A,(r’)vx(r’)

€N T EpNY -hw

-2

AN’

. [4] (15

whereu,(r) anduv,(r) are positive-energy electron and pos- largely extended while the states close to the Fermi energy
itron eigenstates of the Dirac Hamiltonian for the crystal andare more localized, so one would expect the matrix elements
form a complete orthonormal set of four-component basigo be smaller. For further details see Sec. Il C of Ref. 10.
functions in the Dirac space. The quantum state labean  Henceforth the first term in E¢15) will be referred to as the
then be related by symmetry argumentsAolIn Eq. (15  resonant term and the second as the nonresonant term.
term [1] represents scattering with no photons and positive In elastic scattering of x rays,(r) is an atomiclike core
energy electrons only in the intermediate state, t¢Pinis  state localized at a lattice site. Although it is localized it is
when there are two photons and positive energy electronstill an electron state of the crystal Hamiltonian. It is given
only in the intermediate state, terf8] is for no photons and by

when negative-energy electrons exist in the intermediate

(nym; m ~
state, and ternj4] is for when two photons and negative- " gKéKn’(rn)XKi(rn)
energy electrons exist in the intermediate state. We may re- uAn(rn) = 2 i (o, m oo , (17)
call that within the golden rule based Thomson scattering e AT (F)X e (Fo)

formalism the negative-energy related state terms have the (m; m; ) ) )
wrong sign. Therefore amplitudg8] and [4] in Eq. (15 ~ Whereg,, (rn) andf,, \(r,) are solutions of the radial spin-
have been nonrigorously corrected by multiplying them bypolarized Dirac equatidf at the siten and xT(f) are the
—1. The positive energy one-electron states are subject to thgual spin-angular functions with angular momentum related
constraint thai, < e and €, > €¢. The relativistic photon-  quantum numberAE(ij)f‘leMSAs in Eq.(10b) the sum
electron interaction vertex is OVEr k|, runs overx, =k, and «,=—x,—1 only.

Xq}\(r) == E(

2 \1/2 . '
) o %(")(Q)eiq", (16) 2. Evaluation of the cross section

2Veow The physical observable measured in MXRS experiments
wheree=-|¢|, andq, AM(q’,\’) represent the wave vector and is the elastic differential cross section for scattering. This is

polarization of the incidentoutgoing photon, ance™(§) is ~ 9iven by(see Sec. Il E of Ref. 0

the polarization vector for the x-ray propagating in the direc- do V202

tion of g. The a=(ay, e, a,) are the usual relativistic ma- a0 W“qx;q’w(ww, (18)
trices in the standard representation. In Edp) the last two

terms are neglected. The justification for this is twofold.where the symbols have their usual meanings, and we need
First, in the energy range of interekto<2mc® these two to calculate the first two terms of E@L5), i.e., f*P° and
terms have no resonance, and so will only make a contribuf(Pos.

tion to the cross section that is slowly varying. This is to be  When implementing Eq.15) for a perfect, translationally
compared with the resonant behavior of the first term. Secperiodic multiatom per unit cell crystal we use the following
ondly, in Thomson scattering, where the negative energyoordinate transformations:

states play a key role, all the electron states are extended. In

a crysltoalli{le enyvironment the negative energy states are r=Ry+r =RP+R+r, (193

235127-5
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r'=R; +r;, :RJ(0>+ Ry+ry, (19b) form of the photon-electron interaction vertex of HG6)
b ! then we end up to the following expression for theéPod
whereR® andR!” denote theith andjth basis atoms, re- scattering amplitude:
spectively, in the Oth unit cell, an®, and R; are Bravais

lattice vectors. §+(po3 -i(q' -q)RY
. . "/ w
Furthermore, we use the substitutions Toniari (@) = % E 22e

n Ap
E PPN (199 y mX‘n)”k(q’h’)mA”rﬁ*“‘ @) | o
- € ,
N AN 65{2 -+ hw
>3 (190 (213
A’ ik where the resonant matrix elements are defined as

and . :
miy(an) = L AUl ()X ) PR + 1),

f d*r— > > L &, (19¢ (21b)
% | i i

whereS" refers to thenth atomic sphere within the unit cell.
In EqQ. (21) we notice that

d¥’ — f By, 19
fw r ;21: i rJ] ( f) 2 i@ Ry = cellsz '-q,K» (223)

whereN, |, andJ stand for the label of unit cells, i, j stand
for the label of basis atoms, aridN,) is the initial core state
label for an atom at sit&,, . \%
Using Eqs(19) and(8) in connection with ternjl] of Eq. Ek - E (277)3le2 d*, (22b)

(15) the resonant part of the positive-energy scattering am- ' !
plitude for a perfect crystal can be written as whereNgq s IS the number of unit cells in the crystd#, is a
reciprocal lattice vector, and,_q k is the Kroneckeis func-

and

§+(po3 tion

fanarn (@) = % % AE)JEK AN, ~ eJk+ﬁw As the last step, we decompose the general basis atom
. labeln in Eq.(21) into typet (t=1,..., Ny, and basis atom

label i (i=1,...,N,), i.e., n=(ti). Consequently, this intro-

duces the following notational changes in Eg1):

X2 > L‘ dsrliuA(Nn)(Rli+r|i)xgr)\r(R|i +rp)
| i i

Niype Nt
xRS S [ R, ) S-33 a-A RO
g jJe ! t=1 i=1
XXgn(Ry, +13)Uawy(Ry, +13), (20) ML @ g k)
where the sums are restricted such teag )< e and e
>e " u - u® e — I’i(t). (23)
F.
We approximate Eq20) in a similar way as we did ear-  |jplementing these notations along with Eg82) in Eq.

lier in our R-SP-GF-MS method based MXRS theesge (21) |eads to the final expression for the resonant part of the

Sec. II B of Arolaet al!%). Because the core stategw,  scattering amplitude in Bragg diffraction which is

participating to the x-ray scattering<S) are well-localized

around siteRy , the dominant contribution to XS in ERO) fobon (@) = g(gf%,w(w)Nceusz Sok (243

comes from thd;=N, (i.e., i=n) and J;=N, (i.e., J

=N, j=n) terms. From the phy5|cal wewpomt this refers to where the Oth unit cell contribution to the scattering ampli-

the situation where in the anomalous scattering process of ¥,de is

rays a core electron will be annihilated and created at the N

same atomic sité€site-diagonal scattering I o
Furthermore, we note that in the perfect crystal case théo N qw(“’) E (277)3f dk> X X e

following properties can be usedl) RN R0>+RN, (2 ke1Bz t=LEL A

electronic coordlnaterN can be replaced by, (3) m/{'tﬂk(q?\)mﬂ{'l)ﬂk*(q?\) ik
PR RO+R+r) = Rk (RO +r ), ie., Bloch's theorem X el = &+ ho+iT/2 0"~ €r), (24D

for intermediate states, an@d) the core state labeh(N,) o
=A,, i.e., is unit cell independent. If we also use the explicitwhere Q=q’'—q, and the matrix elementm(A“)”k(q)\) are
t
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given by Eq.(21b) with the new notations of Eq23). The Similarly, it can be shown that the nonresonant matrix

added phenomenological parameié{li represents the natu- elements can be written as

ral width of the intermediate states created by the core hole (ti)-jk B i (0 o

state|A,) at thet type basis atom. Mt K@) = 25 LA (U Xaal i) + B (U Xal i),
Similarly, starting from term[2] of Eq. (15), it can be A

shown that the expression for the nonresonant part of the (28)

scattering amplitude in Bragg diffraction can be written as Where(f|XqK|g) quantities can be calculated by doing the

f-(pos FP09 (N 5 25 replacemenx \— Xgn in Eq. (27D).

ot (@) = oy q vl@) ensz QK (253 Finally, we hention few practical points about the imple-
mentation of the matrix elements of Eq&7) and (28). We

where the Oth unit cell contribution to the scattering ampli-yjj| derive below numerically tractable approximations for

tude is these matrix elements due to the electric dig&#) or mag-
Niype Nt o netic dipole and electrig quadr_upodM1+E2) contributions
qu : 2 f dckD DD e to the photon-electron interaction verty, (r).
j kelBz t=1 i=1 A
m[{l)—]k(q/)mgi)—jk*(q/)\/) 1. Matrix elements in electric dipole approximation
: : 0 - e), In the electric dipole approximatiofEl) [€97~1 in Eq.

f(At) -~ hw : (ti)+jk
t (16)], the resonant matrix element," (gn) of Eq. (27)

(25D can be written as
where the nonresonant matrix element is defined as

(4K iy \ — ik Oy at
L . m N = AU X ¥
m<Aut)—Jk(q)\) _ J§ dari(t)uX)tT(ri(t))xq)\(ri(t))lll]k(ﬂgt)+ri(t)). ay, "(an) EA [AA (U [ Xagy| durn)

(250 + BV Xal\ B, (299
The total amplitude in Bragg diffraction can then be calcu- h
lated from where
(pos +(pos -(pos Ve N(A
qu q’x'(w) = (fO;qx;q’w(w) + fo;qx;q’x’)Ncellsg Sk Xag\(r)=-e oV a- € )(Q)- (290
eow
(26) Using the core state expansigh?7) and the_ expansions
where f; P and f; " amplitudes are given in Eqg24b)  (10b) for ¢, (r) and the analogous expansighy,(r), re-
and(25h), respectively. spectively, it can be shown thanX1|Xa;A|¢,,m) in Eq. (299

can be written as
D. Matrix elements

In this section we present the derivation of computable (u(t)IXagxquVm)
expressions for the matrix elements “t +'k(q)\) and

/{'t) K(g\) in the framework of the R-SP-SIC-LMTO elec- . foo\Y2
tronic structure method. Using the expansion of B6a) for - Tled 2V
the SIC-LDA Bloch state/#*(r), and noticing that the inde-
pendent single-site solutiogh,.,(r) of the Dirac equation RY
vanishes outside the atomic sphere at &itg i.e., ¢, (r) X E {lf *drr?g' 9, Jt(r)f(t)ml(ey,r)}
=0 for r>8 (see Ref. 49, pp. 120%1then the resonant
matrix elemenmﬁt't)”k(q)\) can be written as

Eow

R
. : . (N N ws R
i) *(qhh%[AﬁkA(uXilx Albua) + BE UL X ducn) ], XA gy (@)~ { fo dr r*f ’(r)g el wr)]
(279
where(f[X],|g) is defined as XA(_KMm " m( )} (308
) — et iyt
(f|qu|g) o Ld M X e, (270 in terms of the radial and angular integraRys is the

Wiegner-Seitz radius and the angular integrals are defined
wheref=u(! L andg= g, or bur- by'©
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o ey aygay e 0, followed by a rotation about theaxis of ¢, in the active
AKm rm (§) = f)(,('(r)(f -eM(@)x,/(NdQ. (30b)  interpretation they are given by

(fll(aqu)q' +) f12(0q1¢q7 +)>

A numerically tractable expression féu’|Xal,|,.1) in
Ny ol b +) For Oy +)

Eqg. (299 can then be written immediately by doing the re-

placementsf(t)mJ — f(t)mJ andg(t)mJ — g™ on the right side of _ i( - sind, (cosfy + 1)exp(= i) )
Eq. (30a). V2\(cosd, - Dexpli¢y) sing,
Similarly, making a replacemer)¢qk—>Xan in Eq. (28), (33)

and using the propertiag,(r)= Xaq_x(r) for circularly po-

larized light, we can immediately show that the nonresonant
matrix elements can be computed from the resonant ones in (
the E1 approximation(for further details, see Sec. 11 D of

Ref. 10 as

f11(0q5¢q1_) f12(0q!¢QI_)>
f21(0q g =) 2Oy =)

i . 1 ( - sind, (cosfy — Dexp— i dy) )
ma, " (an) = may TG — ). (31) (costy + 1)expli¢y) sind,
If the photon propagates along the direction of magnetization (34)
(the z axig) then the unit polarization vectors for left circu-
larly polarized(LCP) and right C|rcularly polarizedRCP) for positive and negative helicity x rays, respectively. The
light are €"(2)=(1,i,0)/12 and €2(2)=(1,-i,0)/12, re- angular matrix elements of E¢30b) together with the sym-
spectively. To obtain the polarization vectors for propagatiorinetry of theAtlA andBlf| coefficients determines the selec-
directions away from the axis, rotation matrices are applied tion rules in the electric dipole approximation.
to these vectors. Using the well-known orthonormality prop- It is important to note that the selection rules, derived
erties of the spherical harmonics the angular integrals of Eriginally for x-ray scattering in the framework of the
(30b) can be written Green’s function multiple scattering electronic structure
theory!® can be applied as such only to each term of Eq.
(299 separately with angular momentumlike quantum num-
11 bers of the core statéA;) and single-site valence orbital
> 2) (A).5°TheEL1 selection rules then becorhel,=+1 for RCP
and LCP radiation in any propagation direction, white
-m;=0,+1, depending on the polarization state as well as
>5”,5m m + f12(0g, b, \) on the propagation direction of the photon. It is also notice-
able that the selection rules in the case of matrix elements

AE:\Y)T'I Km(q) fll(eqa¢q; ) (I J mJ

AET
oM TS

I\.)II—‘

maA“t Hk(gn) are slightly different from the case of matrix
XC(I}j'mj 1 1)C(I’ Sjrsml + s _}> elementsna“) (gn) with respect to the azimuthal, quan-
2" 2 2 2" 2

tum number, because E(0a contains angular matrix ele-
ments of the formA™, while the corresponding expression
X 81 &my v +1+ F22(6, P M) for ma“) KN containsA® with an opposite polarization
state |nde>il.O
1 1 1 Derivation of the selection rules for the matrix elements
XCUZEm+5.=5 ma(A“)”k(q)\) or ma <“t “(g\) would be possible only fok
pomts of high symmetry whose irreducible double point
1 11 group representations and the angular momenturfxm;)
XC("EJ";mj — 5 §>5II’5m m-1 decomposition for their symmetrized wave functions are
known. However, we apply numerical rather than group the-
oretical procedure to determine the selection rule properties
1. ! 1.1 of the above mentioned matrix elements.
+ f22(0qv¢qy)\)c + 2 2

2. Matrix elements due to magnetic dipole and electric

XC(I’ 2 ,m + 1 )Cﬁl (32) quadrupole correction
We derive below an expression for the combined mag-
netic dipole and electric quadrupalM1+E2) correction to
The angular factor$;;(6,#,\) are determined by the direc- the electric dipole approximatidit1) of the matrix elements
tion of propagation and the photon polarization. They areof Egs. (278 and (28). If we now approximateed’ ~1
discussed in detail by Arolat all® In the case where the +iq-r in Eq. (16) for X (r), then the termiq-r is respon-
direction ofq is described by a rotation around thexis of  sible for the(M1+E2) corrections to the electric dipole ap-
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proximated matrix elemenma(A"tHk(q)\) and maﬂ{i[)_jk(q)\), The angular matrix eIemenBi(ﬁ:]__K,m,(Q) of Eq.(36b) can
which we denote ambﬁ't)“k(q)\) and mbX't)_Jk(qk). respec- e written as a sum of twelve terr]tﬁeé Eq(26) of Ref. 1Q.
tively. Consequently, the selection rules of M1 +E2) contribu-

It is then a straightforward matter to show that the matrixtion to the x-ray scattering are essentially more complicated
elementmb(A“)”k(q)\), related to the resonant part of the scat-than in theEl case.
tering amplittude, can be written as As guided by theEl case above, we can derive thd1l
+E2) selection rules for each term of E@5a with angular
aik ~ " . .
mb(At't)ﬂ (gn) =, [A%iA(U(At)Jqu)J(ﬁmA) moment_umllke quantum numbers of th(_a core s(at_t{:) and
A single-site valence orbitdlA). The resulting selection rules
ik Ot | are thenl-1;=0,£1,£2 with the restriction thas— p and
+ BtiA(UAJquAM’VtA)]' (353 p— s be forbidden transitions, and for the azimuthal quan-
tum numbermj—mj[:O,il,tZ, depending on the direction

where and polarization of the photdf.

1/2
Xbgy(r) = - ec< 2V60wq> a-eM@)iq-r. (35b Ill. RESULTS

Using again the angular momentum expansions of the In this section we discuss a series of calculations to illus-
(t) trate the relativistic MXRS theory we have developed within

core s’FateuA, qb”m;ﬁi.r:(d Pun functhns, as we did in t_he the SIC-LSD method for ordered magnetic crystals, and to

derivation of thema, ""(q\) expression, we get for the first explicitly demonstrate what information is contained in the

term of Eq.(359 as X-ray scattering cross section. For this we have chosen to
examine fcc praseodymium for a detailed analysis of the
theory. The reasons for this choice are as followis.

(UXHXb:N%tA) Praseodymium contains two localizéelectrons. Therefore,
it is the simplestf-electron material for which we can to a
A 12 large extent alter both the spin and orbital contributions to
=- c(ZVEow ) the magnetic moment by selectively choosing beforehand for
q

which electrons we apply the SIC correcti@i) Being fer-
© ) romagnetic and fcc it has qnly one at.o.m per primitive _ceII
%> {{JRWSdr rgg(t)mj‘(r)f(t)mj(e r)} and is therefore computationally efficient to work with.
. 0 K|y Kl he ATV While the fcc structure is not the observed ground state of Pr,
A it has been fabricated with this structure at high temperatures
and pressuregiii) Using nonrelativistic SIC-LSD we have
obtained good agreement with experiment for the valence
and equilibrium lattice constant of praseodymiuin.) Pre-

XBl o @ { [*ear et iognen
t ] 0 Kt
liminary calculations indicate that for the rare-eakk, and

’
t K

My edges the MXRS spectra are, to first order, independent
XB(—_KX’Lq. o @ () (363 of crystal structure, so the results we obtain may be provi-
T sionally compared with experiment.
where the angular integrals are defined®%y A. Ground-state properties

) We have performed a self-consistent fully relativistic SIC-
B%.-K'm'(@ = f XM(F) e - eM(@)d .fX’:;'(f)dQ, LSD calculation of the electronic structure of praseodymium
e at a series of lattice constants on the fcc structure and found
(36b) a minimum in the total energy as shown in Fig. 1, where the
results are presented in terms of the Wigner-Seitz radius.
where|q|=|F|=1. A similar expression can be worked out for There are a variety of different methods for obtaining the
the second term of Eq(353 by doing the replacements experimental lattice constant. First we can use the Wigner-
f(t2mj—>f(t?mi andg(tfmieg(tfmj on the right side of E¢(36a.  Seitz radius that corresponds to the same volume per atom
) 'fgy fga (28)',( ) the ) Twonresonant matrix elements ©on the fcc Iatticeoas is found in the naturally occurring dhcp
mbxl)—Jk(q)\), due to the(M1+E2) correction, can then be crystal structuré® This givesR,s=3.818 a.u. second!y we
worlt<ed out by making the replaceme)(lb;)\aquA in Eq. can take the room temperature value Wh!Ch is obtained ex-
(35a. By noticing thatqu)\(r)=—Xb;_k(r), We can express perimentally from flakes of Pr by quenching in an arc fur-

. : nace. This yield$yys=3.827 a.u. and we can take the value
the nonresonantM1+E2) matrix elements in terms of the reported by Kutznetso? Rys=3.793 a.u. which was mea-
resonant ones as sured on samples at 575 K. Clearly our calculated value of

ti)-jk )k Rws=3.82 a.u. is in excellent agreement with these values.
mb(A[ (qn) = mb(At @=n). (37) Following earlier work by Myron and Li# Séderlind per-
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' ' ' ing which arrangement of electrons has the lowest total
energy we can determine the ground state of praseodymium.
It should be pointed out that this interpretation is rather dis-
tinct from the standard model of the rare-earth magnetism
where the Hund’s rule ground state can be thought of as a
linear combination of possiblef# states. In our model the
exchange field is automatically included and this yields a
Zeeman-like splitting of the # states and gives us a unique
ground state. In Table | we show a selection of possible
a0 | | states occupied by the two electrons with their self-
+ consistently evaluated spin and orbital magnetic moments. In
, , , Fig. 2 we display the calculated total energy of these states
3.7 3.8 3.9 against orbital moment. Note that we have chosen the spin
moments parallel for all the states shown. For the antiparallel
arrangement of electron spins the energy is significantly
FIG. 1. The calculated SIC-LSD total energy of fcc praseody-higher. It is clear that there is an approximately linear rela-
mium as a function of Wigner-Seitz radius. The electronic configu-tionship between the total energy and orbital moment. For all
ration corresponding to the Hund’s rule ground state was used foihe points on this figure the orbital as well as spin moments
these calculations. The theoretical prediction of the Wigner-Seitare computed self-consistently including the relaxation of the
radius is 3.82 a.u. Experimentaligee text the value is 3.818 au core states. The spin moments for all configurationsf of
(Ref. 30, or 3.827 a.u(Ref. 5J) or 3.793 a.u(Ref. 52. electrons are found to be approximately the same, always
being within 0.0z of 2.48ug (see Table)l in fair agree-
formed a comprehensive first-principles study of the elecment with the result of Soderlintt. There is also a small
tronic structure of Pr using the full potential LMTO method increase in the magnitude of thipositive) spin moment as
which shows that the fcc phase is stable at pressures betwethre orbital moment increases from its most negative to its
60 and 165 kbat* Calculations employing the SIC within a most positive values. This is due to the increasing effective
nonrelativistic framework have been performed by Temmerdield felt by the valence electrons. There is a slight variation
manet al® and by Svanet al>® in the spin moment values because the small hybridization of
Within the SIC-LSD method we can choose which elec-the non-SIC corrected electrons with the & 6s conduction
tron states to correct for self-interaction. As the effect of theband is dependent on the orbital character of the occupied
SIC is to localize the states this effectively determines whichstates. Figure 2 is as consistent with Hund’s rules as it is
two of the 14 possiblef states are occupied in trivalent possible to be with single particlelike wave functions. The
praseodymium. All non-Sl-corrected electrons are describetbwest energy state hak spins parallel to each other in
using the standard local spin-density approximation via thegreement with Hund’s first rule. The total spin moment is
unified Hamiltonian describing both localized and itinerant2.42ug of which the two localizedf electrons contribute
electrons. By trying all possible configurations and determin-1.98ug, and the remainder comes from spin polarization in

-4.698

T
+
1

Total Energy (Rydbergs)

Wigner Seitz Radius (a.u.)

TABLE |. This table displays thef states selected for the self-interaction correction and the self-
consistently calculated spin and orbital magnetic moments of those states. The first column simply labels
different configurations of localized states, the second column givesithed mg quantum numbers of the
states from which self-interactions have been removed. Columns 3 and 4 are the calculated spin and orbital
contribution to the total magnetic moment from the self-interaction corrdcébectrons shown in column 2.
Columns 5 and 6 are the calculated total spin and orbital contribution to the magnetic moment from all
electrons in fcc Pr. Note that the spin moment is fairly constant for all the selected configurations.

No. (my, mg)q(my, my) M(SIC) M(SIO) M (1) Ms(t)
1 (—3,1/2), (-2,1/2) —4.96 +1.98 —4.79 2.42
2 (-3,1/2), (-1,1/2 -3.95 +2.00 -3.01 2.43
3 (-3,1/2, (0,1/2) ~2.99 +1.99 ~2.97 2.43
4 (-3,1/2, (1,1/2) -1.96 +1.96 -1.97 2.48
5 (-3,1/2, (2,1/2) -0.98 +1.99 -1.03 2.48
6 (-3,1/2, (3,1/2 —0.005 +2.00 -0.05 2.52
7 (3,112, (-2,1/2 1.00 +1.99 0.89 2.48
8 (3,112, (-1,1/2 2.02 +1.97 1.84 2.50
9 (3,1/2, (0,1/2) 3.00 +1.98 2.75 2.49
10 (3,1/2, (1,1/2) 4.00 +1.97 3.80 2.52
11 (3,112, (2,112 4.99 +1.99 4.69 2.54
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o6 | ' ' ' ! "] field, i.e., in our case parallel to the spin magnetic moment.

) x Figures 3 and 4 show the cross section athe and M,,
edges, respectively, as the SIC configuration is changed sys-
X tematically such that the component of the orbital moment
varies from negative to positive values while at the same
x X time the calculation shows that the spin moments remain
nearly constant in magnitude and parallel to the exchange

x field. As the orbital moment increases we see that the cross
% section at theM, edge changes only slightly for LCP x rays
while for RCP x rays it changes dramatically. At the most
negative orbital moment th#l,, RCP cross section is very
small, being completely overshadowed by the LCP peak. At
x . . , . the other end of the scale where the orbital moment is most
0, —2 0 2 4 positive the cross section fol,, RCP x rays is considerably
larger than that for LCP x rays. It should also be noted that
Orbital Moment (Bohr Magnetons) the cross section peak for RCP x rays is 1-2 eV lower in
energy than the peak for LCP x rays.

. FIG. 2. .The calculated total energy per atom of fpc praseogly- When the resonant scatterifijo~ e-—¢, ) is close to
mium relative to the ground-state energy as a function of orbital o Lt .
moment in Bohr magnetons for the states shown in Table I. AIIthe MV edge, it is the R.CP CrOSS.SeCtlon. that remains ap-
magnetic moments were self-consistently determined and the spﬂmx'mately C.O.nStam with changing orbital moment, al-
moment was approximately constant for all the configurationsthongh a significant shoulde_r does appea}r on the low-energy
shown. If an antiparallel arrangement of spins was selected thé'de of the curve as thg orbltalimc.)ment mcreasgs. The LCP
energies were considerably higher. peak decreases dramatically with increasing orbital moment.
At the My, edge, peaks from RCP and LCP x-ray scattering

. . are again separated by 1-2 eV, but the ordering of the peaks
the valence bands. Thecomponent of the orbital magnetic is reversed from the case of thé, edge scattering.

moment is —4.7g which is composed of ~4.9¢ from the Figures 3 and 4 indicate that tié,, and M, cross sec-

localizedf electrons and 0'3’.85 frpm the valenge electrons.. tions are directly related to the orbital moment of the con-
Note that the valence contribution to the orbital moment is

arallel to the spin moment and antiparallel to the IocalizeuStituent atoms, although they do not indicate the direct pro-
par P P ; . hportionality between magnetic moment and scattering cross
orbital moment. These numbers are fully consistent wit

Hund’s second rule. Furthermore thehell is less than half section suggested by BluneFor example, theMy edge

full and the spin and orbital moments are found to be anti 0SS section for LCP photons hardly varies in the upper two

. . ) . pictures in Fig. 4 despite a change of nearlyg2in the
parallel in the lowest energy state, consistent with Hund'e' : : . P
third rule. The fact that we can reproduce the expected Iatticorb'tal moment. To clarify this point further, we show in Fig.

: : § the cross section at thd,, and M\, edges for SIC con-
constant and-ele_ctron configuration sugge_sts very Stro.”QIYfigurations that produce an orbital moment close to zero with
that the electronic structure calculated using the relativisti

SIC-LSD method describes the ground-state properties of f She spins of the two occupiefdstates parallel. While neither

C. . . . .pe
praseodymium well. A detailed discussion of the electronicglﬁ S:p;r; c?i?)rn tsgrtgir:;tah (;r‘:;mz? ttmc;haré%e eSIt%rgﬁsan}c/i,v éhe
structure of the rare earth metals, calculated using the rel y y v €dd 9

L X . qielicity curve is approximately constant while the positive
tivistic SIC-LSD method, will be published elsewhéfe. helicity curve alters dramatically. On the other hand, at the

) ) M,y edge it is the positive helicity curve that is approxi-
B. X-ray scattering cross sections mately constant while the negative one shows significant
We have performed calculations of the x-ray scatteringvariation. This figure implies that the resonant x-ray scatter-
cross section at th#,, andM,, absorption edges of Pr for ing does not measure the total orbital moment, but is a mea-
all the f-electronic configurations shown in Table I. Thesesure of the orbital angular momentum of the individual one-
were evaluated with an arbitrary value BE 1 eV which is  €lectron states.
smaller than one would expect experimentally, but as the The important message of Figs. 3-5 is that the scattering
purpose of this section is to investigate the capability of thecross section is not directly proportional to the total orbital
theory only rather than to make a strict comparison withmoment of the material. However, both the spin and orbital
experiment, it does not pose a problem. The effect of increagnoment have a strong influence on the size of the cross
ing I is simply to broaden and smooth out the calculatedsection peaks.
curve. A selection of the results is shown in Figs. 3 and 4. In

Total Energy (eV)
o
>
1

o
N
T
x

1

each figure the cross section for left-handedly circularly po- IV. DISCUSSION
larized (LCP) photons, i.e., with positive helicity, and right- '
handedly circularly polarize(RCP) photons, i.e., with nega- The standard theory of x-ray magnetic scattering is based

tive helicity, are shown. The geometrical setup of theseon the work of Blumé-. He derived an equation for the non-
calculations assumes that the propagation directions of theesonant x-ray scattering cross section using a nonrelativistic
incident and outgoing photons are parallel to the exchangapproach with relativistic correction to orderct/ The re-
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FIG. 3. The scattering cross section at Mg edge for praseodymium for electron configurations 1, 3, 5, 7, 9, and 11 from Table I. Each
figure is for a different pair of localizefl electrons. The calculated total orbital moment in Bohr magnetons is shown in the top left of each
figure. The full curve is the cross section for x rays with positive helicity and the dashed curve is that for negative helicity x rays. A general
trend of increasing magnitude of the cross section for negative helicity incident photons as the orbital moment increases from negative to
positive is clearly observable in these curves. The positive helicity curve remains approximately constant with increasing orbital moment.

sulting expression for the cross section, using his notation, iand emitted photons. The first term in E§8) is the Thom-

) son term, responsible for the charge scattering. The term con-

( d’c ) taining A depends on the orbital momentum and the term
dQ'dE'" /. containingB depends on the electron spin. This expression
clearly shows that there are three distinct contributions to the

<b|2 eirilaye’ - magnetic scattering cross section, one from the orbital mo-
ment, the second from the spin moment, and the third from

the interference term between the spin and orbital moment.

, (38 We also note the obvious point that if the orbital and spin
moments of the individual electrons sum to zero, then the

where E, and E,, are the energies of the initial and final _magnetic scattering vanishes. Most interestingly, £38)

many- electron statefa) and |b), respectively.K =k -k, implies that, with a suitable_ ch_oicg gf the photon energy,

wherek andk’ are the wave vectors of the incoming and geometry, and photon polarlzaylon Itis possmlt_a to separate

scattered photons, respectively, apdP;, ands; are electron contributions to the cross section from the orbital and spin
L ’ ]1 J

(rigorously density functional sta)t@;oordinate momentum _moments. However, this_ expressi_on is no_t directly app!icable_
and spin operators ’ " in our resonant magnetic scattering studies because its deri-

vation involves an approximation which is strictly not valid
A=¢€ Xe (39 close to the resonance, while our approach is only valid
around resonance because we ignore the negative energy
and contribution to the scattering amplitude, i.e., the terms that
, ~ . . .- involve creation of virtual electron-positron pairs in the in-
B=¢Xe-(k'X €)X (k Xe)-(k Xe)(e k) termediate states in the second order perturbation thigegy
o N Sec. IIC of Ref. 10 Another difference from Blume’s
tkI X e(e-k) (40 theory is the fact that our work is based on fully relativistic
depend only on the direction and polarization of the incidenguantum mechanics, while E(B8) exploits the semirelativ-

2
(I’:ZC2> 5(E Eb+ﬁwk ﬁa)kr

—|—<b|2éKf(KﬁkP +SJ%B)|a>
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FIG. 4. The scattering cross section at Mg edge for praseodymium for electron configurations 1, 3, 5, 7, 9, and 11 from Table |. Each
figure is for a different pair of localizefl electrons. The calculated total orbital moment in Bohr magnetons is shown in the top left of each
figure. The full curve is the cross section for x rays with positive helicity and the dashed curve is that for negative helicity x rays. A general
trend of decreasing magnitude of the cross section for positive helicity incident photons with increasing orbital moment is clearly observable
in these figures. The negative helicity curve remains fairly constant in magnitude with increasing orbital moment although the feature on the
low-energy side of the peak does become more pronounced.

istic approximation. This difference makes direct comparisorsingle-particle states witin=+1 has the samz component

of the two theories difficult. This has been discussed byof orbital angular momentum as a two-particle state com-
Strangé! who has rederived Eq38) as the nonrelativistic posed of two single-particle states witlh=+3, but Eq.(38)

limit of a fully relativistic theory of x-ray scattering. For does not suggest that they will have the same scattering am-
these reasons and the fact that there is no one-to-one cornglitude. Nonetheless, Blume’s expression implies that a
spondence between the terms in our expression for the scattrong dependence of the cross section on the components of
tering amplitude and Blume's expression, there is nothe magnetic moment is likely and indeed, this is exactly
straightforward way to compare the two theories. It is oftenwhat we have found, an approximate, but by no means rig-
stated that Blume’s expressigB8) shows that the cross sec- orous proportionality between orbital moment and magni-
tion for magnetic scattering will yield the orbital and spin tude of the cross section which is dependent on the polariza-
moment of a material separately. Although this will usuallytion of the x ray. Furthermore, Fig. 5 explicitly demonstrates
be the case it is not rigorously true. Equati@8) cannot be the dependence of the cross section on the magnitude of
applied immediately because the initial and final stags of the occupied individual electron states.

and|b) are general many-body states that have not been de- The question that now arises is how our computed x-ray
fined in detail. For implementation purposes they must bescattering results can be interpreted in terms of the detailed
described as many-electron states that will contain the indeglectronic structure of praseodymium. In order to understand
j which is being summed over in E@38). In a magnetic this we analyze the electronic structure of fcc Pr for the cases
material the radial part of the basis functions of the singlewhere the orbital moment is equal to —4uf —0.05ug, and
particle wavefunctions, as well as the angular part, depend.69ug in detail. We expect the scattering cross section to
onm. So, we would expect the total scattering amplitude toreflect the Pif-electron density of states. Although the shape
have a contribution from the orbital angular momentum asof the cross section is partially determined by the density of
sociated with each single-particle state, but this is not thetategDOS) the total DOS changes very little when pairs of
same as being proportional to the total orbital angular moelectrons with differing orbital moments are localized.
mentum. For example a two-particle state composed of twd herefore, a simple interpretation of the changes in the cross
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FIG. 5. The scattering cross section at g
and M, edges for praseodymium. Each figure is
for a different SIC configuration but which pro-
duces roughly the same orbital and spin moment.
The thick line is for negative helicity incident x
rays and the thin line is for positive helicity inci-
dent x rays:(a) Localizing them=-1 andm,=
+1 electrons with spin up, yields an orbital mo-
ment of —0.0%g and a spin moment of 2.443,

(b) localizing them=-2 andm=+2 electrons
with spin up, vyields an orbital moment of
-0.12uB and a spin moment of 2.4iB, (c) lo-
calizing them=-3 and m=+3 electrons with
spin up, yields an orbital moment of —-0,0B
and a spin moment of 2.538.
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section with the orbital moment in terms of the total DOSergy. This indicates that there are two typed @lectrons in
cannot be made. In relativistic theories of magnetism differ-our calculation, the localizeflelectrons which determine the
ent values of total angular momentujnwith the samez  valence and the delocalizédelectrons which determine the
componentm; are coupled and further decomposition hasva_len_ce transitionés._ Itis the delocal_ized electrons that are
little meaning®® To facilitate understanding of the differ- principally responsible for the noninteger values of the or-
ences in the spectra as orbital moment varies we show Bital moments shown in Figs. 3 and@though there is also
selection of density of states curves, decomposed by the aZ small contribution from the valenced electrons.

muthal quantum numben. in Figs. 6-8. There are several _Comparison of the corresponding diagrams in Figs. 6-8
points that should be notied about these pictures. shows dramatic differences. Even though the total density of

_ \ : states is fairly insensitive to whichelectron states are oc-
Th_e my=£7/2 (these are pure;—l+1/_2 §tate$ f|gur_es cupied themy-decomposed density of states is obviously
describef electron states with a well-defingdvalue, while ’ ]

: : : drastically altered depending on which electrons are local-
all the others showf states with two different values gf ized. In particular thef states just above the Fermi energy

(_J_|+1/2 and J_l_llz)'. In all the pictures exceptn form a significant number of the intermediate states in the
=+7/2 there are two main peaks, however these two p.eak%rmal theory described earlier. Therefore if key ones are
do not necessarily have the same weight. The separation gicjized they become unavailable as intermediate states for
the peaks represents the spin and spin-orbit splitting of thg,e spectroscopy and the cross section may be substantially
individual values ofm;. The splitting between the unoccu- gitered. Of course, occupying orfestate means that some
piedf states is around 0.1 Ry while the splitting between theptherf state is not occupied which may then also play a role
occupied and unoccupied states is about 0.7 Ry. The smallgis an intermediate state for the spectroscopy. Indeed, how
narrow peaks in some of these figures represent the hybrignuch the unavailability of particulan; substates affects the
ization of differentf states between themselves. Some Ofspectra depends on other factors too, inc|udingﬁﬂ]€5e|ec_
these densities of states are markedly broader than others aﬁlGn rules which are Composed of angu|ar matrix elements.
this is a reflection of the degree of hybridization with the Each angular matrix element contains four terms in the form
conductions-d electrons. of a product of Clebsch-Gordan coefficients and a geometry
In Fig. 6 we have chosen to apply the self-interactionand polarization dependent factor. A further influence is the
corrections to the(m=-3m=+3) and (M=-2m=+3) fact that the LMTO coefficient&l¥, [defined in Eq(17) and
(configuration 1 in Table)lin the nonrelativistic limit, and completely determined by a self-consistent band structure
this is reflected in the density of states having a very largealculatior] associated with thé electrons are found to be
and narrow peak at around0.7 Ry form;=-5/2 and -3/2.  fairly independent of the rare-earth element under consider-
There is nothing for these states to hybridize with so they ar@tion but their magnitude has a clear but complex linear pro-
very tall and narrow atomic-like states. Fot=-5/2 and  portionality tom,.
—3/2 the density of states has a more bandlike component Detailed analysis of the major contributions to the cross
corresponding to a single electronic state just above theection suggests that the highest peak is formed by the core-
Fermi energy. For most of the other valuesngfthere is a  to-valence transitiongds,, m) — [ fs,, m;+(-)1] for the My
density of states corresponding to two electron states close {aCCP(RCP) edge scattering an@ds/p, my) —[f7,,,m+(-)1]
€= and form;=7/2 thedensity of states close te- corre-  for the M,, LCP(RCP) edge scattering. The former transition
sponds to a single purie=|+1/2 state. . for My, case is in agreement with the nonrelativistic selec-
In Fig. 7 we have selected tHeelectrons which corre-  tion rule which forbids a\j=2 transition, although this tran-
spond to(m=-3m.=+3) and(m=+3m=+3) in the non-  sition is not totally forbidden in the relativistigl selection
relativistic limit for the SIC(configuration 6 in Table)l Here  ryle. In theM,, case, the\j=0 transition is observed to form
itis them;=-5/2 and themn;= +7/2 components of the den- part of the shoulder rather than contributing to the main
sity of states that have the localized state arour@i7 Ry  peak. Furthermore, within the transitions forming the main
below the Fermi energy. This means there ismg=7/2  peak, the contribution to the LCP scattering at both Nhe
character aroundg at all in this case. For most other values andM,, edge is the largest from the most positive allowed
of m; we can clearly see that there are tivstates close to value of the core state. On the other hand, the most negative
e Detailed examination of these peaks shows that the domim; value of the core state gives the largest contribution to the
nant cause of the splitting is the exchange field, although theCP scattering. This indicates the fact that the Clebsch-
splitting is also influenced by the spin-orbit interaction. ForGordan coefficients which are used to calculate the selection
m;==7/2 there is only one state close¢gpof course. In Fig.  rules are a dominant factor in determining the relative size of
8 we have chosen to apply the self-interaction correctionshe cross section peaks. The origin of this is simply in the
to thef electrons which correspond (m|:+3,msz+§) and  properties of the Clebsch-Gordan coefficients which vary
(m=+2mg= +§) in the nonrelativistic limit(configuration smoothly between either 0 and 1 or 0 and depending on
11 in Table ). This time it is them;=5/2 andm;=7/2 states  the values of the other quantum numbers.
that are localized, and again there is mp=7/2 character From these considerations, we see that the separation of
aroundeg. Them;=-5/2 andm;=-3/2 state have the spin- the LCP and RCP peaks by 1 to 2 eV is a reflection of the
split behavior close ter in this case. The other valuesiwf  spin splitting of the states. In relativistic theary andm are
behave as before. not good quantum numbers. Furthermore, because of the
Itis clear from Figs. 6-8 that in sonmg, channels there is  magnetism, different values gfwith the samem; are also
a small amount of bandliké character below the Fermi en- coupled. However, it is still possible to associdss), (I,
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FIG. 6. Thel=3 contribution to the density of states of praseodymium decomposed by, theantum number for the case when the
my=-3 andm,=-2f states with spin up are occupig¢ldcalized. In the top right of each figure is the self-consistently calculated orbital
moment. Each figure is also labeled with the relevant value ofrthguantum number.
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FIG. 8. Thel=3 contribution to the density of states of praseodymium decomposed by, theantum number for the case when the
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with these quantum numbers and also to recognize the domstated earlier then; decomposed relativistic magnetic scat-
nantj in atomiclike unhybridized bands. For example, in thetering cross section has a “proportionality” hgq due to the
case of LCP scattering at tié,, edge, the largest contribu- Clebsch-Gordan coefficient in the angular matrix element ex-
tion to the cross section comes fram=3,m;= +g)-like or-  pression defining thEl selection rules. Whether this propor-
bitals. The two 4 states which have thisy as the main tionality is direct or inverse depends on the polarization of x
contributor are characterized Hys,)~ +%,<|Z>2 +2) and rays. In addition, according to the electronic structure calcu-

(¢s)=-3,(l,)=+3). Electronic structure calculation shows Iatilon, as the unhybridized state goes frdth)=-3.(s,)

1 . . .
that the former state is dominated kg -4 and the latter by = 3 to (<7|Z>: +3’<SZ>:§)’ the dominang changes from
x=3. Therefore theM, LCP peak is most affected by the =3 to j=; gradually. This tells us two things. First we notice
availability of the spin-downl,) =3 state as an intermediate that if a certain state has a major impact on the scattering

state. Similar analysis shows that thlg, RCP peak is most Cross section at thé1,, edge for RCP photons, then this
affected by the spin-ugl,y=-3 state,M, LCP by the Same state has a relatively minor effect on the cross section

spin-up(l,) =3, andM,, RCP by spin-dowr(l,)=-3 state. for LCP photons at the same edge because of the Clebsch-
Although this analysis is a gross simplification, it doesGordan factor in the expression for tB& selection rules as

explain why the relative peak energy positions in the I_Cpmentloned al_)ove. Secondly we see that thls same state also
and RCP scattering cases swap betweenMhe and My, has onIy_ a mmor_effect on thigly, cross schon_beca_use the
edges(see Fig. 3 Of course this is true only if these states v_a]ue O.fJ for the intermediate states involved in major tran-
are still available after the chosen localizations by SIC. The'tion differ betweerM_N an(_jMV. )
effect of localization on the MXRS spectrum is most dra- Af the SIC conﬂguratl?n varies fronﬁ(lgz—l&(sZ)
matic if SIC is applied to these key states, changing the peak +3) and (1) =-2 (s)=+3) to ((I)=-3 (s)= +3) and
energy separation as well as the scattering amplitude bé¢l,)=+3(s,)~ +%) so that there is a systematic change in
tween the LCP and RCP scattering cases. the z-component of the total orbital moment, tiv,, RCP
Some empty valence band states participating in the cross section increases because the second, third and so on,
scattering process have nearly equal mixture of the jwo strongest contributors to the cross section become addition-
characters, i.e.j=1+1/2 andj=I-1/2. If there is strong ally available as intermediate states as they are released from
spin-up and spin-down character in the unoccupied valencthe SIC localization. However, they have progressively less
states described by a specifit then both spin states may be impact as we proceed through this series of quantum num-
available as the intermediate states for the spectroscopiers since the majqr gradually changes tgb:%. The cross
Thus we may clearly see a two-peak structure inrthele-  section at thévl,, edge for LCP photons is not affected much
composed amplitude for a certain polarization at the absorppy this change in quantum numbers since neither the initial
tion edge. Figure 9 shows the cargdecomposed LCP scat- nor the final SIC combination in the above series involves
tering amplitude and the two-peak structure mentioned abovghe major contributors tv,, LCP cross section. On the
is clearly visible formj:+% at theM,y, edge. other hand, theMl,, edge LCP cross section is reduced as
In certain cases we can interpret the apparent relation benore and more significant contributors are removed from the
tween the magnetic cross section andzftemponent of the  available intermediate states, while the cross section at the
total orbital moment as follows. Becausg)+(s)={j, My edge for RCP photons is not much affected for the same
holds, then we see that if we apply self-interaction correcteason ad/,, LCP case. Obviously the above change in SIC
tions to states systematically according to Hund’s rules, whatonfiguration is very artificial. However as the states are
is effectively done is to occupy the states in ordenpfAs  filled up according to Hund's rule as we proceed through the
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rare-earth series, we would expect to observe changes in the V. CONCLUSIONS

cross section governed by these considerations for rare earths

where the intermediate states can be considered as atomgééggoonﬁl%zof'sgtcviﬂri;];_m?grgitt'igr)]('g%};rz(ézgﬁgnsn?asgz
like. However, a very different interpretation of the x-ray

spectra may be required in the case where delocalized banaggbgade\;\/gr?]zcjee?I?ungre;[tesetggr?ﬁ;g)rn &ﬁﬁrznhzs blﬁ:i?iodne-

like intermediate states are of primary importance, as is th ' : ory PP

case in resonant x-ray scattering at i@ndL, ,, edges o fcc praseodymium and usgd this examp_le to |Ilus_trate
Finally, we are unaware of any experirr|1|é”r|1tal easurelNe dependence of the scattering cross section on spin and

ments of the MXRS spectra of praseodymium o it c:Om_orbltal magnetic moments. It has been shown that the theory

pounds at thél,, or My edge. However, a careful combined quantitatively reproduces the dependence on the spin and

neutrot” and x-ray® (at theL,;, edge$ investigation into

orbital magnetic moments originally predicted qualitatively.
the magnetism of H®r,_, alloys has concluded that the Pr

ion does have af4moment at all values of. Deenet al>®
have performed MXRS measurements at theedges in
Nd/Pr superlattices and found a large peak at the absorption P.S. and E.A. would like to thank the British EPSRC for a
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