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Abstract

The offset-normal shape distribution is defined as the induced shape distribution of a

Gaussian distributed random configuration in the plane. Such distributions were introduced

in Dryden and Mardia (1991) and represent an important parameterized family of shape

distributions for shape analysis. This paper reports a method for performing maximum

likelihood estimation of parameters involved. The method consists of an EM algorithm with

simple update rules and is shown to be easily applicable in many practical examples. We

also show the necessary adjustments needed for using this algorithm for shape regression,

missing landmark data and mixtures of offset-normal shape distributions.

Keywords: EM algorithm, shape analysis, offset-normal shape distributions, mean shape.
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1 Introduction

Statistical shape analysis has important applications in biology, anatomy, genetics, medicine,

archeology, geology, geography, agriculture, image analysis, computer vision, pattern recognition

and chemistry (see e.g. 1.2 of Dryden and Mardia 1998). In many situations the object of study

is 2-D so its shape features can be explained by the position of a finite collection of points in

the plane. These points are called landmarks. Assume that the number of not-all-coincident

landmarks under study is k with coordinates given by a k × 2 matrix

X† =

(

x†
1 x†

2 · · · x†
k

y†
1 y†

2 · · · y†
k

)T

.

In statistical shape analysis, it is of interest to study an iid sample of such planar configurations:

X
†
1, · · · ,X†

n generated by some distribution F (X†) and observed after each one of those is randomly

re-scaled, rotated and translated (c.f. 5.3 of Dryden and Mardia 1998). In other words, our

observed data consists of elements

si(X
†
i + 1k ⊗ tTi )Ri

where si > 0 is a re-scaling factor, Ri is an element from SO(2), the group of rotations in the plane

and 1k ⊗ tTi with 1k, a k-vector of ones and ⊗ the Kronecker product, represents the translation

effect by a vector ti in the plane. Considering si, ti and Ri as nuisance parameters, the statistical

inference based on the underlying distribution F (X†) needs to be invariant to location, rotation

and scaling for each observed element si(X
†
i + 1k ⊗ ti)Ri. This is essentially an inference problem

based on the shapes of planar configurations X
†
i .

In this paper we will focus on situations where F is Gaussian, namely, vec(X†) has a 2k dimen-

sional normal distribution N2k(vec(µ
†), Σ†) where vec(X†) is the vector of length 2k obtained by

concatenating the two columns of X†. The induced shape distribution, which is the main concern

of our paper, is called the Mardia-Dryden offset-normal distribution and is found in Dryden and

Mardia (1991). Such distributions given later in equation (4), represent an important family in

statistical shape analysis and a considerable amount of research has been done with regard to

estimating their parameters. These distributions have appealing practical properties since practi-

tioners want to build models based on the assumptions in configuration space and interpret their

estimated quantities, like mean and correlation, in terms of landmarks.

In particular, in Le (1998) and Kent and Mardia (1997) it is shown that if Σ† is a multiple

of identity, the Procrustes mean shape calculated using the general Procrustes algorithm is a

consistent estimator of the shape of µ†. As a result, the inference carried out via the Procrustes

tangent coordinates is based on the induced distribution on the tangent space of the Procrustes
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mean (c.f. 7.2 of Dryden and Mardia 1998). In Kent and Mardia (2001) it is shown that if

the entries of Σ† are small compared to the size of µ†, the inference based on the tangent space

of the Procrustes mean is appropriate since the shape variables projected into that space follow

approximately normal distributions. However, in the general covariance case and in relatively

dispersed shape data this approximation may not be reasonable.

In this paper, we will work directly with offset-normal shape distributions and develop a new

method for exact maximum likelihood estimation of parameters involved without making any

approximation. Since the distribution is known for these cases, the likelihood function is given

in closed form. However, due to its complicated form, direct numerical likelihood optimization

based on standard numerical routines is generally difficult and could be unstable, especially when

working with full covariance structures and large number of landmarks. For this reason, attempts

based on maximum likelihood approach have only been reported for very simple covariance struc-

tures and low number of landmarks (c.f. 6.7.4 of Dryden and Mardia 1998). In our method

however, dimensionality poses less of a problem since the algorithm runs efficiently based on the

Expectation Maximization (EM) algorithm and the update steps take a rather simple form making

the implementation straightforward. This enables us to construct maximum likelihood ratio tests

for a wide range of inference problems in shape analysis such as two sample problems or shape

regression based on Gaussian distributed configurations. The method proposed can also cope with

missing data, a feature not immediately available for the Procrustes shape space approach.

The paper is organized as follows. In Section 2 we give an introduction to shape variables and

offset-normal shape distributions as well as parameters needed for identifying them. In Section 3

we introduce the EM algorithm for general covariance matrices by establishing the general update

rules. Section 4 describes the necessary adjustments of the algorithm for some covariance structures

which have applications in statistical shape analysis. Implementation issues related to re-labeling

invariance of landmarks and missing data are addressed in Section 5. In Section 6 we consider the

extensions of the EM to an estimation approach for shape regression and mixtures of offset shape

distributions. In Section 7 we apply the algorithm to real data and conclude the paper with some

general remarks about the proposed method and possible future applications of EM algorithm in

likelihood based inference for shape analysis.

2 Background and notation

In this section we obtain the shape distribution which is the object of our mle approach. We

achieve this by using Bookstein shape variables as in Dryden and Mardia (1991) and discuss the

number of parameters involved for estimation.
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2.1 Shape variables and the offset-normal shape distribution

For a particular configuration X†, we can identify its shape as follows. First remove the information

about translation by left multiplying X† with the (k−1)×k matrix L constructed as (−1k−1, Ik−1)

where Ik−1 is the identity matrix of dimension (k−1)× (k−1). In fact, the matrix transformation

X† → X = LX† generates the coordinates of the remaining k − 1 vertices after translating the

original configuration X† such that its first landmark is mapped to the origin (0, 0). Clearly this

is a linear projection from R
2k to R

2(k−1). We call X = LX† the preform of configuration X† and

if we write it as

X =

(

x2 x3 · · · xk

y2 y3 · · · yk

)T

the rotation and scale information can be removed via

X → X

(

x2 −y2

y2 x2

)

1

x2
2 + y2

2

=

(

1 u3 · · · uk

0 v3 · · · vk

)T

(1)

provided that x2
2+y2

2 > 0. The shape coordinates of configuration X† are u = (u3, · · · , uk, v3, · · · , vk)
T

and are called the Bookstein’s shape variables. They are obtained by the coordinates of the re-

maining landmarks after configuration X† is translated, re-scaled and rotated such that its first

two landmarks coincide with points (0, 0) and (1, 0) respectively.

The basic assumption for obtaining u in this way is x2
2 + y2

2 > 0, namely, the first two landmarks

of X† are not coincident. Otherwise, we can choose some other pair of landmarks to define an

alternative base line for obtaining shape coordinates. Such a pair exists since the landmarks of

X† are not-all-coincident.

Let us assume now that vec(X†) is distributed as N2k(vec(µ
†), Σ†) and we want to find the dis-

tribution of shape variables u. This is achieved by integrating out h = (x2, y2)
T which represents

the rotation and scaling information for the preform X. Apart from some zero measurable set,

transformation (1) is valid and if we take

W =

(

1 u3 · · · uk 0 v3 · · · vk

0 −v3 · · · −vk 1 u3 · · · uk

)T

then vec(X) = Wh. Since X = LX† then vec(X) ∼ N2k−2(vec(µ), Σ) where µ = Lµ† and

Σ = (I2 ⊗ L)Σ†(I2 ⊗ LT ). Hence, the joint pdf of (hT ,uT ) with respect to Lebesgue measure is

f(h,u; µ, Σ) =
1

(2π)k−1|Σ|1/2
exp{−G

2
}|J(X → (h,u))|, (2)

where G = (Wh − vec(µ))TΣ−1(Wh − vec(µ)) and |J(X → (h,u))| = ||h||2(k−2) is the Jacobian
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of the transformation X → (h,u) with u obtained as in (1). Rewriting G as

G = (h− ν)T Γ−1(h− ν) + g

with Γ−1 = WT Σ−1W, ν = ΓWTΣ−1vec(µ), g = µT Σ−1vec(µ) − νT Γ−1ν,

we can simplify further (2) by transforming with respect to the eigenbasis of Γ,

Γ = ΨDΨT , ζ = ΨT ν, ℓ = ΨTh

where D = diag(σ2
x, σ

2
y). Since the determinant of the Jacobian does not change under orthogonal

transformations, the pdf of (ℓ,u) is

f(ℓ,u; µ, Σ) =
|Γ|1/2 exp(g/2)

(2π)k−2|Σ|1/2
fN (ℓx; ζx, σx)fN (ℓy; ζy, σy)(ℓ

2
x + ℓ2

y)
k−2 (3)

where fN (x; µ, σ) denotes the pdf at x of the Gaussian distribution with parameters µ and σ.

Using the binomial expansion

(ℓ2
x + ℓ2

y)
k−2 =

k−2
∑

i=0

(

k − 2

i

)

ℓ2i
x ℓ2k−4−2i

y

we can integrate out ℓ = ΨTh (scale and rotation) to obtain the marginal (offset-normal shape)

pdf of U

fU(u; µ, Σ) =

∫

f(ℓ,u; µ, Σ)dℓ =
|Γ|1/2 exp(g/2)

(2π)k−2|Σ|1/2

k−2
∑

i=0

(

k − 2

i

)

E(ℓ2i
x |ζx, σx)E(ℓ2k−4−2i

y |ζy, σy) (4)

where E(lp|µ, σ) denotes the moments of the univariate Gaussian distribution with parameters

(µ, σ). These are calculated as (see 3.462/4 and 8.972 in Gradshteyn and Ryzhik 1980).

E(ℓp|µ, σ) =

(

σ√
−2

)p

Hp

(
√
−1µ√
2σ

)

=

{

(2σ2)qq!L(−1/2)
q (−µ2

2σ2 ) if p = 2q

µ(2σ2)qq!L(1/2)
q (−µ2

2σ2 ) if p = 2q + 1
(5)

where Hp is the Hermite polynomial of order p and

L(α)
q (x) =

q
∑

i=1

(1 + α)q(−x)i

(1 + α)ii!(q − i)!

with (1 + α)i = (α + 1)...(α + i), the generalized Laguerre polynomial of order q.

Note that the expression for fU in (4) is not as complicated as it might first appear since fU

involves only even moments of (5), i.e. p = 2q. If σx = σy, the summation of expectations in (4)

simplifies to a simple expression of L1
k−1. This corresponds to the complex covariance case seen

later in section 4.1.
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2.2 Parameter space

Let us assume that we are given shape observations u1, · · · ,un such that they correspond to some

unobserved sample X
†
1, · · ·X†

n from N2k(vec(µ
†), Σ†) and we want to estimate parameters (µ†, Σ†).

Notice that we have in general 2k and k(2k + 1) parameters for µ† and Σ† respectively. Since

vec(X) ∼ N2k−2(vec(µ), Σ) where µ = Lµ† and Σ = (I2 ⊗ L)Σ†(I2 ⊗ L)T , in the preform space,

at most 2(k − 1) + (2k − 1)(k − 1) parameters could be identified. Due to the shape invariance

with respect to scaling and rotating of preforms X, we can only estimate in terms of ui those

parameters which identify the equivalent class

Θ = {(sµR, s2(RT ⊗ Ik−1)Σ(R ⊗ Ik−1))|s ∈ R
+,R ∈ SO(2)}. (6)

Without loss of generality we can assume that the mean µ is re-scaled and rotated as in transfor-

mation (1) such that its first column is (1, 0). So there are at most 2(k − 2) parameters for the

mean and (2k−1)(k−1) for Σ identifying Θ in (6). In fact, Dryden and Mardia (1998) expect that

only (k − 2)(2k − 3) parameters are practically identifiable for Σ (see page 138 there). Therefore,

the parameter space has probably a total dimension 2(k−2)+(k−2)(2k−3). However, while the

parameters for the shape of µ are fully identifiable, in one of the examples considered, we treat

the estimation of general covariance as if it has (2k − 1)(k − 1) identifiable parameters.

Certain conditions on the structure of Σ avoid this identification problem. If for example Σ is that

of some complex normal distribution (described in section 4) then it has (k−1)(k−2) parameters

and so its entries are fully identifiable up to some re-scaling constant s.

Note that shape coordinates are obtained via a mapping of configurations X† to some lower di-

mensional space of variables u. Therefore there exists a large class of singular and non singular

Gaussian distributions in configuration space which induce the same offset-normal shape distribu-

tion. However, our estimation method is in fact dealing with only those parameters which identify

equivalent classes (6) and not all those identifying µ† and Σ† in configuration space.

Alternatively, we could have chosen to filter the translation by simply replacing the matrix L with

some other matrix K of the same dimension such that its j-th row is given by

(−dj ,−dj, ...,−dj , jdj, 0, ..., 0)

where dj = {j(j + 1)}− 1

2 is repeated j times. With row vectors orthogonal, K is in fact the sub-

matrix of the Helmert k×k matrix. The coordinates of the resulting preform XH = KX† are called

in 4.1.2 of Dryden and Mardia (1998) Helmertized landmarks. If XH is then transformed as in

(1) the resulting shape variables are called Kendall shape variables. The main algorithms that we

describe here are given in terms of preforms X and Bookstein’s shape variables. However, they can

be derived in the same way in terms of the Helmertized preforms XH and Kendall shape variables.
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The only difference is that the covariance matrices in preform space need to appropriately reflect

the linear transformation for producing the preforms.

3 EM algorithm for general covariance

The Expectation-Maximization (EM) algorithm is a maximum likelihood parameter estimation

method and was originally developed by Dempster et al. (1977) for the cases where part of the

data can be considered to be incomplete or “hidden”. This paper represents the first attempt

to apply this method for shape analysis. We will describe this algorithm in terms of elements in

preform space with the hidden/missing data part being the rotation and re-scaling information.

Our target is to find the values of µ, Σ identifying equivalent classes in (6) which maximize the

log-likelihood function

L(µ, Σ) =

n
∑

i=1

log fU(ui; µ, Σ)

where fU(u; µ, Σ) is the induced pdf of shape variables u if X ∼ N2k−2(µ, Σ) and ui are the

observed shape data.

The EM algorithm suggests an iterative optimization method such that the current estimate values

µr, Σr are updated with µr+1, Σr+1 such that L(µr+1, Σr+1) ≥ L(µr, Σr) with equality only at some

stationary point. In particular, for given µr, Σr, the values µr+1, Σr+1 are chosen to maximize the

following function with respect to µ and Σ

Qµr ,Σr
(µ, Σ) =

n
∑

i=1

∫

log(fN (Xi; µ, Σ))dF (Xi|ui, µr, Σr)

where fN (· ; µ, Σ) is the pdf of Gaussian distribution with mean µ and covariance Σ, and F (Xi|ui, µr, Σr)

is the conditional distribution of Xi given its shape ui. The updated values can be calculated once

we know how to maximize Qµr ,Σr
. This is the M (maximization) step of the EM algorithm. Since

the Gaussian distribution is of exponential family form, the algorithm is simplified with the E

(expectation) step given in terms of the expectations of the sufficient statistics given the observed

data at a current parameter estimate. These are explained in further detail below.

M-step

By interchanging the order of differentiation with expectation and then following the same dif-

ferentiation rules as in maximum likelihood estimation of multivariate normal distributions (see

chapter 15, section 3 Magnus and Neudecker 1988), we see that taking the differential of Qµr ,Σr

with respect to µ and Σ we have

dQµr ,Σr
(µ, Σ) =

1

2
tr
(

(dΣ)Σ−1(S − nΣ)Σ−1
)

+ n(dvec(µ)′Σ−1(M − µ)) (7)
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where

M =
1

n

n
∑

i=1

∫

vec(Xi)dF (Xi|ui, µr, Σr)

and

S =
1

n

n
∑

i=1

∫

(vec(Xi) − vec(µ)) (vec(Xi) − vec(µ))T dF (Xi|ui, µr, Σr).

Therefore the maximum of Qµr ,Σr
(µ, Σ) is achieved at

vec(µr+1) =
1

n

n
∑

i=1

∫

vec(Xi)dF (Xi|ui, µr, Σr) (8)

and

Σr+1 =
1

n

n
∑

i=1

∫

vec(Xi)vec(Xi)
T dF (Xi|ui, µr, Σr) − vec(µr+1)vec(µr+1)

T . (9)

E-step

The expectation step is performed by finding expectations (8) and (9) which establish the update

rules for the parameter estimates µr and Σr. It is clear that we can calculate them once we know

how to calculate entries of
∫

vec(X)dF (X|u, µr, Σr) and
∫

vec(X)vec(X)TdF (X|u, µr, Σr). These

expressions are given in the following
Lemma 1.

∫

vec(X)dF (X|u, µ, Σ) = WΨ

∫

R2 ℓf(ℓ,u; µ, Σ)dℓ

fU(u; µ, Σ)
(10)

and

∫

vec(X)vec(X)TdF (X|u, µ, Σ) = WΨ

∫

R2 ℓℓ
T f(ℓ,u; µ, Σ)dℓ

fU(u; µ, Σ)
ΨTWT (11)

where W, Ψ and ℓ are defined as in Section 2.1 and for the pairs (a, b) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}
∫

R2 ℓa
xℓ

b
yf(ℓ,u; µ, Σ)dℓ

fU(u; µ, Σ)
=

∑k−2
i=0

(

k−2
i

)

E(ℓ2i+a
x |ζx, σx)E(ℓ2k−4−2i+b

y |ζy, σy)
∑k−2

i=0

(

k−2
i

)

E(ℓ2i
x |ζx, σx)E(ℓ2k−4−2i

y |ζy, σy)

The proof of the lemma is found online in the Appendix of the supplemental material.

Since the EM algorithm is a local optimization procedure, running it from different starting points

is necessary to increase the chance of finding the global maximum. The integrating measure

dF (X|u, µr, Σr) is in fact the conditional distribution of pre-form X (derived by configuration X†)
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given its shape. This measure exists even if the first two landmarks of X† are coincident since we

can use alternative base lines in order to generate shape coordinates u. This will be addressed in

Section 5 but until then we assume that shape variables u are obtained as in (1).

4 Particular cases

In many situations in shape analysis it is appropriate to reduce the number of parameters by

imposing some constraints in the covariance matrix Σ†. This is also necessary if we want to carry

out maximum likelihood ratio tests and avoid identification problems of parameters. In particular,

we will focus on three cases:

• Σ† is that of general complex normal distribution. This covariance type remains invariant

under rotations.

• Σ† has a cyclic correlation pattern which is used for large number of landmarks around the

boundary of objects (see 6.7.1 in Dryden and Mardia 1998).

• Σ† is simply a multiple of the identity matrix i.e. Σ† = σ2I2k. In this case, the distribution

induced in the shape space is isotropic with center at the shape of µ and concentration

depending on the ratio ||µ|| /σ2.

In all these cases the algorithm needs to be adjusted since the corresponding updating rules for

Σr are shown to be different. In this section, we rely on the complex representation of the shape

variables involved and show that the corresponding EM steps of (8) and (9) are easier to calculate

since they take a compact form.

4.1 Complex Normal Distributions

One can easily see that shape coordinates u can be alternatively obtained using complex represen-

tation of planar points. If for example the preform X is rewritten as Z = (z2, z3, · · · , zk)
T ∈ Ck−1

such that zj = xj +
√
−1yj then ξ = Z/z2 = (1, ξ3, · · · , ξk)

T where ξj = uj +
√
−1vj . Complex

normal distributions are particularly important since they correspond to cases when the covari-

ance matrix parameters are fully identifiable and they remain invariant of rotations in preform

space. The complex covariance structure for the vector of coordinates vec(X†) corresponds to the

restrictions of the form

Σ† =
1

2

(

C†
1 −C†

2

C†
2 C†

1

)

9



where C†
1 is positive definite and C†

2 is skew-symmetric matrix, i.e. C†
2

T
= −C†

2. The covariance

of vec(X) has similar form

Σ =
1

2

(

C1 −C2

C2 C1

)

(12)

where C1 = LC†
1L

T and C2 = LC†
2L

T . If C = C1 +
√
−1C2 and we denote by Z and η the k − 1

dimensional complex vector representation of X and µ respectively, the corresponding pdf of Z is

fN (Z; η, C) =
1

πk−2|C| exp{−(Z− η)∗C−1(Z − η)}

where (Z − η)∗ represents the conjugate and transpose of (Z − η) (see Mardia et al. 1979). The

Jacobian of transformation Z → (z2, ξ) is ||z2||k−1 and based on the complex calculus one can show

that the updated values ηr+1, Cr+1 obtained by optimizing the corresponding Q function are

ηr+1 =
1

n

n
∑

i=1

∫

ZidF (Zi|ξi, ηr, Cr) =
1

n

n
∑

i=1

ξi

∫

C
zfN (zξi; ηr, Cr) ||z||2(k−2) dz

∫

C
fN (zξi; ηr, Cr) ||z||2(k−2) dz

(13)

and

Cr+1 =
1

n

n
∑

i=1

∫

ZiZ
∗
i dF (Zi|ξi, ηr, Cr) − ηr+1η

∗
r+1

=
1

n

n
∑

i=1

ξiξ
∗
i

∫

C
||z||2 fN (zξi; ηr, Cr) ||z||2(k−2) dz
∫

C
fN (zξi; ηr, Cr) ||z||2(k−2) dz

− ηr+1η
∗
r+1 (14)

with ratios calculated as in the following Lemma.
Lemma 2.

∫

C
zfN (zξ; η, C) ||z||2(k−2) dz

∫

C
fN (zξ; η, C) ||z||2(k−2) dz

= ω
(k − 1)

||b||

(

Lk−1(− ||b||2 /a)

Lk−2(− ||b||2 /a)
− 1

)

∫

C
fN (zξ; η, C) ||z||2(k−1) dz

∫

C
fN (zξ; η, C) ||z||2(k−2) dz

=
(k − 1)

a

Lk−1(− ||b||2 /a)

Lk−2(− ||b||2 /a)

where a = ξ∗C−1ξ, b = ξ∗C−1η and ω = e
√−1θ such that ω̄ξ∗C−1η is a positive number.

The proof of the lemma is found online in the Appendix of the supplemental material.
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Remark

If the covariance matrix C is known the EM needs to perform only updates (13) where Cr = C.

The rotation invariance of the complex covariance structures implies from (6) that the estimates

for the remaining parameters η are now obtained only modulo rotations since the scale is fixed by

the known values of the covariance.

4.2 Cyclic Markov Covariance

If the original covariance matrix Σ† has the form Σ† = σ2I2 ⊗ Γ where

Γ(i, j) = (γ|i−j| + γk−|i−j|)/(1 − γk) 1 ≤ i, j ≤ k and 0 ≤ γ < 1

we say that Σ† has a cyclic Markov structure and use it when the number of landmarks is large.

It can be shown that for i ≥ j

Γ−1(i, j) =











(1 + γ2)/(1 − γ2) if 1 ≤ i = j ≤ k

−γ/(1 − γ2) if 2 ≤ j = i + 1 ≤ k or i = 1, j = k,

0 otherwise.

This is a special case of the general Complex Normal distribution corresponding to situations

where the C†
2 component is zero and C†

1 = 2σ2Γ (c.f. 6.7 in Dryden and Mardia 1998). Since the

estimation is based on identifying elements from (6) then without loss of generality we can assume

that σ2 = 1/2 and as a result C = LΓLT . The optimal point for η in Q does not depend on the

covariance structure and so the updated value ηr+1 is calculated as in (13). Replacing η with ηr+1

in Q and noting that

(Zi − η)∗C−1(Zi − η) = Tr(C−1(Zi − η)(Zi − η)∗)

we are left to find the value γr+1 which maximizes

Qηr ,Cr
(ηr+1, C) = −n ln |C| − Tr

(

C−1

(

n
∑

i=1

∫

C

ZiZ
∗
i dF (Zi|ξi, ηr, Cr) − nηr+1η

∗
r+1

))

Since the values
∫

C
ZiZ

†
idF (Zi|ξi, ηr, Cr) are obtained as in Lemma 2, this is clearly a simple

univariate optimization problem and can be carried out numerically. In fact, we do not even

need to find the exact maximizing value of this function as long as we find a value γr+1 such

that Qηr ,Cr
(ηr+1, Cr+1) > Qηr+1,Cr

(ηr+1, Cr) which then implies L(ηr+1, Cr+1) ≥ L(ηr, Cr). This

updating procedure is in the form of Generalized EM algorithm (c.f. McLachlan and Krishnan

1997). If we are to apply the algorithm in terms of the Helmertized preforms XH then the

algorithm runs in the same way as before. The computation time can be significantly reduced

since the covariance structure in the preform space will now be CH = KΓKT with C−1
H = KΓ−1KT

and |CH | = (1 − γ)k+1(1 + γ)k−1/(1 − γk)2 (c.f. 6.7.1 of Dryden and Mardia 1998).
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4.3 Isotropic case

This corresponds to situations when the covariance between landmark is Σ† = σ2I2k. It suffices

for the EM algorithm now to calculate only ηr+1 since as we can see from (6) without loss of

generality we can fix σ to 1 and so the covariance matrix in preform space is known. Note that

in such cases, the covariance in the space of Helmertised preforms XH is σ2I2k−2 (isotropic) and

the EM algorithm now resembles the ordinary Procrustes algorithm which consists of subsequent

rotation matching of ξi with the current proposed value ηr. This is achieved by multiplications

with ωi for each observation. The algorithm here differs only by the presence of a re-scaling factor
(k−1)
||b||

(

Lk−1(−||b||2/a)

Lk−2(−||b||2/a)
− 1
)

where ‖b‖ = ||Z|| ||η|| cos ρ/2 and ||b||2 /a = ||η||2 cos2 ρ/2 where ρ is the

Kendall shape distance between Z and η. It can easily be seen that the estimated value of ||η||
leads to estimation of the concentration parameter (see 6.6.2 in Dryden and Mardia 1998) for

such shape distributions.

5 Incomplete data and base line invariance

In this section we show that the algorithm can be easily adjusted for missing data. In order to

establish that we need to deal first with the base line invariance since the missing data for one

individual can contain those landmarks used as base line for another.

Recall that the shape variables u given in (1) are calculated after the base line for configuration

X† is defined by the first two landmarks. These landmarks are assumed non coincident but the

algorithm can run even if this is not the case as long as some other non coincident pair exists.

The choice of the baseline however does not have to be fixed for each shape observation. In the

following we show how to implement the algorithm for alternative choices of baselines.

Lemma 3. If X and X̂ are the corresponding preforms of configuration X† obtained by the baseline

choices of the first two landmarks and i and j respectively, then

X̂ = LPij

(

0 · · ·0
Ik−1

)

X

where Pij is a permutation matrix which rearranges the rows of X† such that the first two are

exchanged with those in positions i and j.

The proof of this Lemma is straightforward since without loss of generality we assume that the

first landmark of X† is at (0, 0) i.e. X† =

(

0 0

X

)

. This implies LPij

(

0 0

X

)

=

(

0 0

X̂

)

and

so the stated relationship follows.

The matrix Aij = LPij

(

0 · · ·0
Ik−1

)

is clearly square of dimension k − 1 and using the properties

12



of Kronecker products (see e.g. A.3.2 in Mardia et al. 1979) we have vec(X̂) = (I2 ⊗Aij)vec(X).

As a result, if X ∼ N2(k−1)(vec(µ), Σ) then X̂ ∼ N2(k−1)(vec(µ̂), Σ̂) where µ̂ = Aijµ and Σ̂ =

(I2 ⊗Aij)Σ(I2 ⊗AT
ij). If in particular û contains the corresponding shape coordinates of X† with

respect to the alternative baseline then dF (X|u, µ, Σ) = dF (X̂|û, µ̂, Σ̂) and therefore
∫

vec(X)dF (X|u, µ, Σ) = (I2 ⊗ A−1
ij )

∫

vec(X̂)dF (X̂|û, µ̂, Σ̂)

∫

vec(X)vec(X)TF (X|u, µ, Σ) = (I2 ⊗A−1
ij )

∫

vec(X̂)vec(X̂)T dF (X̂|û, µ̂, Σ̂) (I2 ⊗ A−T
ij ).

This implies that the choice of the baseline is not important as long as we appropriately transform

the values µ and Σ to µ̂ and Σ̂.

We return now to the missing data problem and by assuming that for some particular observation

Xi not all the landmarks are given. Applying Lemma 3 for an appropriate permutation matrix,

without loss of generality we assume that the last p < k − 2 landmarks are unobserved and the

base line is defined by the first two of those observed. Denote by X the preform of this particular

observation Xi and write it as X =
(

X̂, X̃
)T

, where X̂ and X̃ correspond to the observed and

unobserved set of landmarks respectively. The square matrix I defined as

I =













Ik−1−p 0 · · ·0 0 · · ·0 0 · · ·0
0 · · ·0 0 · · ·0 Ik−1−p 0 · · ·0
0 · · ·0 Ip 0 · · ·0 0 · · ·0
0 · · ·0 0 · · ·0 0 · · ·0 Ip













has the property

vec(X) = IT

(

vec(X̂)

vec(X̃)

)

(15)

and

vec(X)vec(X)T = IT

(

vec(X̂)vec(X̂)T vec(X̂)vec(X̃)T

vec(X̃)vec(X̂)T vec(X̃)vec(X̃)T

)

I. (16)

Now, the only shape information observed in this case is û which is obtained after applying

transformation (1) to submatrix X̂. Since the unknown information is h and X̃ the contribution

on the EM algorithm of this particular observation is carried out by taking expectations with

respect to the following distribution

dF (X|û, µ, Σ) = dF (X|X̂, µ, Σ)dF (X̂|û, µ, Σ) (17)

where dF (X|X̂, µ, Σ) is the conditional distribution of X given its sub-matrix X̂. Applying stan-

dard results on conditional Gaussian distributions (see e.g. Theo. 3.2.4 in Mardia et al. 1979)

13



dF (X|X̂, µ, Σ) = fN (X̃; Ω, Σ22.1)dX̃

where

Ω = vec(µ̃) + Σ21Σ̂
−1(vec(X̂) − vec(µ̂)) IΣIT =

(

Σ̂ Σ12

Σ21 Σ̃

)

Σ̂ = cov(vec(X̂)), Σ̃ = cov(vec(X̃)), Σ12 = ΣT
21 = E(vec(X̂ − µ̂)vec(X̃ − µ̃)T ) and Σ22.1 =

Σ̃−Σ21Σ̂
−1Σ12. The next term in (17) dF (X̂|û, µ, Σ) is the same as dF (X̂|û, µ̂, Σ̂) which represents

the conditional probability measure applied to the marginal distribution of X̂ with parameters µ̂

and Σ̂.

Integrating out both (15) and (16) with respect to dF (X|X̂, µ, Σ) followed by dF (X̂|û, µ̂, Σ̂) the

corresponding expressions (10) and (11) are actually
∫

vec(X)dF (X|û, µ, Σ) = IT

∫

(

vec(X̂)

Ω

)

dF (X̂|û, µ̂, Σ̂) (18)

and

∫

vec(X)vec(X)T dF (X|û, µ, Σ) = IT

∫

(

vec(X̂)vec(X̂)T vec(X̂)ΩT

Ωvec(X̂)T Σ22.1 + ΩΩT

)

dF (X̂|û, µ̂, Σ̂)I.

(19)

These expectations are given in terms of
∫

vec(X̂)dF (X̂|û, µ̂, Σ̂) and
∫

vec(X̂)vec(X̂)T dF (X̂|û, µ̂, Σ̂)

which coincide with EM expressions for configurations with k − p landmarks.

6 Extensions

6.1 Shape regression

Recent attempts to study the shape change in time are based on the Procrustes tangent coordinates

or spherical splines in Kendall shape spaces (see Kent et al. 2001, Kume et al. 2007). In this part

we will focus on a particular model based on the offset shape distributions.

Let us assume that our observations are shapes of

X
†
i = A

†
0 + A

†
1ti + E

†
i i = 1, . . . , n

where A
†
0 and A

†
1 are matrices of the same dimension as X

†
i , ti are observation time points and

E
†
i are errors from N2k(02k, σ

2I2k). In the preform space of Helmertized landmarks XH = KX†

we now have

XH
i = A0 + A1ti + Ei i = 1, . . . , n

14



where A0 = KA
†
0, A1 = KA

†
1 and Ei = KE

†
i . Since the rows of K are orthogonal then one can

easily see that Ei = KE
†
i are generated from N2k−2(02k−2, σ

2I2k−2). The equation above can be

written as

XH
i = ATi + Ei i = 1, . . . , n

where A = (A0,A1) and Ti = I2⊗(1, ti)
T . If ui are the shape coordinates of XH

i , the corresponding

log-likelihood function is

L(A, σ) =
n
∑

i=1

log fU(ui;ATi, σ).

In the following, we address the question of likelihood estimation for the parameter matrix A

without dealing with the identification issues. The method here consists of simple EM update

rules which produce stationary points of the corresponding likelihood function.

Without loss of generality we can fix σ to 1 and so the parameters to estimate are only elements

of A modulo the rotation effect. We can deal with rotation invariance by making sure that after

each iteration, the intercept A0 is a configuration whose first landmark is a point on the real axis

of coordinates, namely, the first row of A0 has the second component 0. The corresponding Q
function for the EM is now

QAr
(A) =

n
∑

i=1

∫

log(fN (Xi;ATi, I2k−2))dF (Xi|ui,ArTi, I2k−2).

Proceeding in the same way as in linear regression theory, it can be seen that the update rules for

the parameters in A are

Ar+1 =

n
∑

i=1

(
∫

XidF (Xi|ui,ArTi, I2k−2)T
T
i

)

B−1 (20)

where B =
∑n

i=1 TiT
T
i . The E-step in this case is completed based on Lemma 2.

If however, our shape observations are obtained from a collection of m paths such that

XH
ij = ATi + Eij, i = 1, . . . , n and j = 1, . . . , m (21)

where Eij are generated from N2k−2(vec(0(k−1)×2), σ
2I2k−2), then the update rules are

Ar+1 =
m
∑

j=1

n
∑

i=1

(
∫

XijdF (Xij|uij,ArTi, I2k−2)T
T
i

)

B−1. (22)

We shall apply this method to the second example in Section 7.

6.2 Mixture distributions

In practice it is possible that shape data is better explained by a mixture of offset normal shape

distributions (see e.g Burl 1997). The EM can still be applied with relative ease. Assume for
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example that X
†
1, · · · ,X†

n is a sample from some mixture of Gaussian distributions with pdf

F †(x†) =
∑M

α=1 fN (x†; µ†
α, Σα)pα where pα > 0 such that

∑M
α=1 pα = 1. Clearly the induced

pdf of preform X is F(x) =
∑M

α=1 fN (x; µα, Σα)pα and the induced distribution of the shape

variables u will be FU(x) =
∑M

α=1 fU(u; µα, Σα)pα where fU(u; µα, Σα) is defined as in section

2. The parameters that we need to estimate here are µα,Σα and pα where α = 1, · · · , M . The

EM algorithm in these cases can be applied by considering α and variables h as hidden and

constructed in exactly the same way as that given in section 2.7.2 of McLachlan and Krishnan

(1997) for finite mixtures of multivariate Gaussian component densities. Taking derivatives with

respect to variables and equating them to zero we find the update rules

pr+1
α =

1

n

n
∑

i=1

P (α|ui)

µr+1
α =

1
∑n

j=1 P (α|uj)

n
∑

i=1

P (α|ui)

∫

vec(Xi)dF (Xi|ui; µ
r
α, Σr

α)

Σr+1
α =

1
∑n

j=1 P (α|uj)

n
∑

i=1

P (α|ui)

∫

vec(Xi)vec(Xi)
T dF (Xi|ui; µ

r
α, Σr

α) − µr+1
α µr+1

α
T

where

P (α|ui) =
fU(ui; µ

r
α, Σr

α)pr
α

∑M
β=1 fU(ui; µ

r
β, Σ

r
β)pr

β

.

These update rules are similar to those in Section 2. In the mixture case however, the influence of

every data point on µr+1
α and Σr+1

α is weighted by a factor of P (α|ui)
∑n

j=1
P (α|uj)

. For the complex normal

cases the algorithm has a similar form involving expressions as in Lemma 2.

7 Applications

For illustrative purposes we choose two data sets which have previously been studied in the

shape analysis literature. The first is chosen in order to illustrate the estimation of the mean

and covariance of the offset normal distributions for different covariance structures. The second

example is chosen to demonstrate the application of EM for the shape regression model introduced

in the previous section. In addition we have also used synthetic datasets to evaluate the full

covariance model.

If the variation of landmarks is much smaller than the mean baseline (as is typically the case),

taking as parameter starting values those derived from the normal approximations given in 6.59

of Dryden and Mardia (1998) seem to work well. For simple covariance structures, the Procrustes

mean and identity matrix as starting values for µ and C seems to work well in all the following
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examples that we have explored. Moderate variations from those starting points do not seem to

matter. Except for the last experiment on synthetic data, all calculations were carried out on a

modern PC with processor speed 3Mhz, and the calculation time for running each EM took no

longer than 10 minutes.

7.1 Gorilla skulls

The first application is based on careful measurements of locations of 8 landmarks chosen in

the middle plane of 29 male and 28 female gorilla skulls. This data set is studied in detail in

(see e.g. 7.1.2 in Dryden and Mardia 1998) where some inference results are reported based on

Procrustes tangent space coordinates. In the following, we will use the likelihood approach for

checking whether there is any sex shape difference between these groups and explore the covariance

structure between landmarks.

A schematic representation of male and female skulls is provided by the polygons shown in Figure 1

where the first two vertices are (0,0) and (1,0) respectively. Bookstein shape coordinates are those

of the remaining vertices.

The EM algorithm applied to male skulls produces the log-likelihood values at the mle estimates

1048.48, 981.415 and 874.971 for general, complex normal and isotropic covariance structures

respectively. The shapes of the means for each model do not differ much since the Kendall

shape distance ρ between any two of them (including the Procrustes mean) is less than 0.006.

Analogous log-likelihood values for the female group are 1110.5, 1054.28 and 954.01 with the

interpoint shape distance ρ between mean shapes not exceeding 0.005. However, the Kendall

shape distances between the means of males with those of females are around 0.056.

Figure 1 about here

If we are to test H0 : Θ ∈ Ω0 versus H1 : Θ ∈ Ω1 where Ω0 ⊂ Ω1 then for large samples and under

regularity conditions, the likelihood ratio test is based on

−2 log ∆ = 2(sup
H1

log L(Θ) − sup
H0

log L(Θ)) ∼ χ2
r

where r = dim(Ω1) − dim(Ω0).

Let us assume that the preforms of males and female skulls are generated from complex normal

distributions CN 7(ηm, Cm) and CN 7(ηf , Cf) respectively. If we want to test whether these means

differ from each other only by some rotation we consider the hypothesis test

H0 : ηm = ηfmod(rot), Cm = Cf versus H1 : ηm 6= ηfmod(rot), Cm = Cf .

The degrees of freedom, i.e. the difference between the dimensionality of parameter spaces in this

case is 13. If we run the EM for the pooled sample, the log-likelihood value at the mle estimates

is 1940.39 where the estimated covariance matrix C is given in Table 1. Based on the remark at

the end of subsection 4.1, the likelihood values for the alternative hypothesis can be obtained by
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running the EM separatively for each group while keeping the entries of Cm = Cf = C the same

as those of Table 1. We obtain the maximum log-likelihood values 954.4 and 1026.6 for the groups

of males and females. Hence, −2 log ∆ distributed as χ2
13 under H0 is 80.2. Since P (χ2

13 > 80.02)

is almost zero there is a strong evidence that modulo rotations, ηm and ηf are different.

These test results are consistent with those in example 7.2 of Dryden and Mardia (1998) where

procrustes tangent coordinates are used to suggest shape gender difference.

Table 1 about here

From the covariance matrix estimates we can infer some results about the correlation between

landmarks. For example, the complex covariance matrix for the pooled sample given in Table 1,

indicates that the imaginary component has relatively small values. This suggests that the covari-

ance between x-coordinates and y-coordinates is relatively small. The value of the fifth diagonal

element of C (which is the variance of the length distance between landmark six and one) is the

smallest, suggesting that with respect to the others, the sixth landmark varies the least. This

could be easily confirmed visually from Figure 1.

7.2 Shape Regression for Rat skulls

The data set considered here consists of the position of 8 biological landmarks of the skulls of 18

different rats. This data set is studied in several publications (e.g. Bookstein 1991, Mardia and

Walder 1994, Le and Kume 2000b). The data are obtained by X-ray images of each of these rats

which are observed at 8 different time points when they are 7, 14, 21, 30, 40, 60, 90, and 150 days

old.

We apply to this data the regression model (21) where the update rules for maximizing the

likelihood are as in (22). The EM algorithm in this case converges reasonably quickly where the

starting value for A is taken such that A0 is the first observation and A1 is the matrix of zeros.

However, different choices of the starting values for parameters do not seem to alter the solution.

The resulting values of the estimated parameter matrices A0 and A1 defined in subsection 6.1 are

given in Table 2. One entry of A0 is fixed at zero to ensure rotation invariance. Based on these

parameter values, the Bookstein shape coordinates obtained via equation (1) for both fitted and

observed configurations are shown in Figure 2. In Le and Kume (2000b) the mean shapes for each

time point shapes are shown to develop closely to a geodesic line in shape spaces. The geodesic

line which starts from the mean shape at time 7 and ends at time 150 is included in Figure 2

dot-dashed lines. Our fitted regression shapes in solid lines seems to fit to the data better.

Figure 2 about here

Table 2 about here
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7.3 The Full Covariance Model

Parameters are difficult to identify in the full covariance EM-algorithm. To test the validity of

this method for estimating the probability density we conducted the following experiment. We

generated 20 training datasets for each of the following sizes: n = {25, 50, 100, 250, 500, 1000, 1500}
(i.e. we generated 20 × 7 = 140 training datasets in total). For each of these datasets we also

generated a separate test set from the same density of 500 data-cases.

Each dataset was generated from the same offset normal shape distribution using three land-

marks with means µ1 = [1, 0]T , µ2 = [0, 2]T , µ3 = [0, 0]T and variances S1 = diag(1, 0.5), S2 =

diag(2, 1), S3 = diag(3, 1.5), which were subsequently being transformed into Bookstein shape

coordinates.

The algorithm of section 3 was run on each of the 140 training datasets with random initializations

for the mean and covariance estimates. After each iteration of EM the mean of the first landmark

was realigned with the x-axis (this has no effect on the offset-normal density). EM learning was

terminated whenever the log-likelihood per data-point increased less than 1E − 5 or when 2000

updates were performed, whichever came first. Standard errors were computed for each value of

dataset size n across the 20 repetitions of the experiment.

Results are shown in figures 3 and 4. In terms of the root mean square error for the parameters

µ and S, we clearly observe they do not converge to 0 as we increase the datasets size1. In

contrast, the log-likelihood curves for train data and test data converge smoothly to the same

value. Moreover, they also converge to the same value as the log-likelihood computed using the

true parameter values. This strongly suggests that our estimate of the probability density does

converge to the true offset normal density from which the data was generated. To show the details

of the behavior for large datasets we separately plot the log-likelihood curves for a restricted subset

in Figure 4 (right).

Figures 3,4 about here

Concluding remarks

It follows from an early result of Fisher (see equation 1 Jamshidian and Jennrich 2000) that

dL(µ, Σ)) = {dQµr ,Σr
(µ, Σ)}µr=µ,Σr=Σ.

1We compared parameters only after applying a linear coordinate transformation to both the true and estimated
mean and covariance. This transformation removes a redundancy in the parametrization and has no effect on the
density, see section 2.2.
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In particular, the values of gradient function of the likelihood can be obtained by straightforward

substitutions of (7) and the results of Lemma 1. Therefore, the results of this paper can be

also used to develop alternative, possibly quicker, gradient likelihood optimization methods (see

Jamshidian and Jennrich (1997) for various EM acceleration methods). However, our EM approach

consists of algebraically convenient update expressions which ensure that the likelihood function is

always increasing and, for a particular covariance structure, it resembles the ordinary Procrustes

algorithm.

The algorithm that we propose in this paper runs without problem on various data sets that we

have tested. The EM is efficient here since the amount of missing data is relatively small, it

has simple update rules and does not have numerical instabilities in the sense that the likelihood

function always increases.

In the complex normal case the consistency of the estimators obtained here is automatically implied

from the general likelihood theory. In particular, simulation results applied to the isotropic case

considered in Subsection 4.3 show that the algorithm converges quickly to the true parameter

values including the concentration parameter of the shape distribution. For the general covariance

case we show in section 7.3 that we have convergence of the probability density but not consistency.

We think that this is probably due to the non-identifiability of parameters.

In general, one drawback of EM algorithms is that sometimes the successive steps in parameter

space can be small and therefore we might decide to stop the algorithm too early. Since the

likelihood function and its gradient is known explicitly, equation 5.1 in Jamshidian and Jennrich

(1997) could be adopted here as a stoping rule.

Using the likelihood function one can obtain numerically the Hessian matrix to give estimated

standard errors of the mle estimators. They can also be obtained from second order differentials

of the log-likelihood function L(µ, Σ). These expressions can in principle be calculated explicitly

(not shown here) but they will be cumbersome and numerical problems are likely to appear due

to high dimensional matrix inversions. This is a problem which needs further investigation since

the calculation of second order derivatives of the likelihood could lead to quicker optimization

methods. Jamshidian and Jennrich (2000) consider various methods for obtaining the Hessian of

the likelihood using the gradient.

Running the algorithm from different starting points in the parameter space can increase the

chance of finding the global maximum. However, more theoretical work is needed to explore

the existence of multiple modes in the likelihood function. In particular, Dryden (1989) identifies

situations where singular Gaussian distributions in configuration space can lead to non-degenerate

offset shape distributions. Note that for the widely used general Procrustes algorithm, unless the

sample points are within a regular ball, the Procrustes mean is not necessarily unique (c.f. 9.1 in

Kendall et al. 1999).
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One possible generalization of this EM approach is to work with the induced affine shape distri-

butions of Gaussian distributed planar configurations (see e.g. Leung et.al. 1998). Clearly, for the

shapes of 3 dimensional configurations the update rules are the same as those in (8) and (9), but

the corresponding expectations are much more complicated and a possible approach will be to

calculate these integrals numerically.

8 Supplemental Materials

Apendix The proofs of Lemmas 1 and 2 (Appendix.pdf).

Data and R code The relevant datasets and the basic code for running the EM for complex

covariance and shape regression can be found in a zipped format. The readme file there

contains starting instructions 2 (dataRcode.zip).
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Table 1: MLE estimates (re-scaled by 102) for the complex covariance matrix of the pooled sample

102C
3.24+0.00i 2.53+0.50i 2.05+0.45i 1.41+0.29i 0.36+0.01i 1.39−0.62i 2.54−0.77i
2.53−0.50i 2.14+0.00i 1.74+0.07i 1.18+0.03i 0.30−0.04i 1.03−0.66i 1.87−0.96i
2.05−0.45i 1.74−0.07i 1.48+0.00i 1.00+0.02i 0.25−0.02i 0.87−0.55i 1.55−0.79i
1.41−0.29i 1.18−0.03i 1.00−0.02i 0.73+0.00i 0.19−0.02i 0.62−0.39i 1.10−0.54i
0.36−0.01i 0.30+0.04i 0.25+0.02i 0.19+0.02i 0.07+0.00i 0.17−0.08i 0.31−0.09i
1.39+0.62i 1.03+0.66i 0.87+0.55i 0.62+0.39i 0.17+0.08i 0.82+0.00i 1.31+0.18i
2.54+0.77i 1.87+0.96i 1.55+0.79i 1.10+0.54i 0.31+0.09i 1.31−0.18i 2.30+0.00i

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2

+

++

+

+

+ +

x

x
x

x

x

x
x

1 2

34
5

6

7 8

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2

+

+
+

+

+

+ +

x

x

x

x

x

x x

1 2

34
5

6

7 8

Figure 1: Bookstein shape coordinates for male (left) and female (right) gorilla skulls and a
schematic representation of their mean shape with the first two landmarks standartized.
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Table 2: Parameter estimates for the simple linear regression model.

A0 A1

7.875 0.000 0.059 −0.084
8.855 −4.721 0.030 −0.184
6.135 −12.777 −0.132 −0.179

−3.688 −21.964 −0.320 −0.224
−19.768 −13.784 −0.524 −0.078
−13.093 −3.732 −0.277 0.030
−8.333 4.701 −0.025 0.163
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Figure 2: The change in time of Bookstein shape coordinates. Each line shows the path of a
particular landmark in time. Observed configuration landmarks are in dashed lines, geodesic
fitted configurations are in dot dashed lines and those of the mle fitted path are in solid lines. The
baseline is defined by points (0, 0) and (1, 0)
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Figure 3: The RMSE for the mean (left) and covariance (right) as a function of the number of
training data-points.
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Figure 4: The log-likelihood (LL) as a function of the number of data-cases. The right figures
display the same lines but with N = 25 and N = 50 removed to better show the convergence
for large values of N . We compare A) the LL with parameters estimated from training data
(solid black line), B) the LL with true parameters (dashed black line), C) the LL of test data with
parameters estimated on training data (solid red line), D) the LL of test data with true parameters
(dashed red line).
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